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Abstract. Speech emotion recognition datasets can have class noise
due to subjectivity during the labeling process or because of automatic
labeling. Class noise has been neglected until recently in machine learning
research. In this work, we study the effects of controlled class noise in 10
datasets from different languages. We find that low levels of class noise
(5-10%) do not significantly affect the performance of classifiers, but
higher levels of class noise severely impact performance. Support Vector
Machines (SVMs) appear to be the best candidate for handling class
noise across most datasets and noise levels compared to other traditional
algorithms. We propose a preprocessing method that effectively corrects
mislabeled samples at moderate and high noise levels, enhancing the
model’s performance as measured by balanced accuracy.

Keywords: SER, class noise, support vector machines,
preprocessing, ensemble.

1 Introduction

Speech Emotion Recognition (SER) is a task of affective computing, the subfield
of artificial intelligence dedicated to recognizing human emotions, sentiments,
and feelings [1]. The SER problem can be seen as a classification problem, where
the aim is to find a proper model (classifier) that maps samples from the input
space X to one of the c discrete labels or classes in a set of labels C. For the
SER problem, as its name implies, the input samples are audio recordings, and
the labels are the set of considered emotions. Fig. (1) is shows the most common
methodologies used in SER. More details about the current state of the literature
for the SER problem will be discussed in the State of the Art section.
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Fig. 1. Most common methodologies followed in the SER problem. Some strategies
involve deep learning approaches. Thicker lines highlight the path followed in this work,
consisting of extracting 13 Mel-frequency cepstral coefficients from audio recordings
and implementing traditional machine learning algorithms. Image inspired by [2].

Since the SER problem can be treated as a classification problem, typical
challenges in classification, such as noise, are also present in SER. Noise can be
simply thought of as errors in the data; according to [8], it is also referred to as
irregularities or corruptions in a dataset. For a more formal definition of noise,
[9] briefly introduces the topic in the context of the Probably Approximately
Correct (PAC) theory. PAC is a mathematical formalization of machine learning
proposed by Valiant in [10]. For regression problems, the expected test error
depends on variance, bias, and noise, as can be seen in Eq. 1:

Err(x0) = [Ef̂(x0)− f(x0)]
2︸ ︷︷ ︸

Bias2

+E[f̂(x0)− Ef̂(x0)]
2︸ ︷︷ ︸

V ariance

+ σ2︸︷︷︸
Noise

, (1)

where x0 is a sample from input space, f̂ is the estimated function and f is
the actual value according to the dataset. A complete derivation can be found
in [11]. This result is studied in the bias-variance decomposition and is typically
derived for regression due to its simplicity.

Noise can reduce the performance of the model, increase the complexity of
the model, and extend the training time [8]. In [12], two categories of noise are
presented: attribute noise and class noise. More details about these types of noise
and methods for their treatment will be provided in the State of the Art section.

1.1 Outline of the Work

The remainder of this paper is structured as follows: In the next section,
State of the Art, we provide a detailed review of the current literature on
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SER and noise in classification tasks. Following this, the Research Goal section
underscores the significance of addressing class noise in SER and outlines the
objectives of this study. In Criteria for Effective Noise Treatment, we present a
theoretical framework that guides the experimental design, which is detailed in
the Experimental Framework section. The remainder of the paper follows the
conventional structure of a scientific paper, including the presentation of results,
conclusions and future work.

2 State of Art

2.1 Speech Emotion Recognition

In [2], a systematic literature review is presented. They consider seven key
questions related to SER; one of these questions is, "What type of speech
datasets3 are used for SER?" They proposed three main categories: acted
datasets, evoked or elicited datasets, and natural datasets.

Acted Datasets Acted datasets represent the most common type of SER
datasets [2]. One example of an acted dataset is the Mexican Emotional Speech
Database (MESD) [4]. For this dataset (and for many other acted datasets), a
variety of actors (differing in age, gender, or accent) are chosen to speak words
or phrases while acting out an emotion.

Elicited Datasets Elicited datasets are created by eliciting emotions in
participants. One example of an elicited dataset is EmoMatchSpanishDB [5]. For
this dataset, the labeling process was done through a crowdsourcing method.

Natural Datasets Natural datasets can be created in different ways, such as
from TV shows, interviews, and conversations between customer care agents and
customers [2, 7]. One example of this type of dataset is the RECOLA dataset,
which is a multimodal corpus, meaning it includes more than one modality. In
this case, it includes audio and video data, as well as physiological data, namely
electrocardiogram and electrodermal activity. The data were obtained through
a video conference where participants were asked to complete tasks.

Feature Extraction SER task follows the typical pipeline of any classification
problem. If it is opted to extract features from the audio signal, instead
of working directly with the raw signal, extracting Mel Frequency Cepstral
Coefficients (MFCCs) is the most widely set of features employed [7]. According
to [21], MFCCs are derived by capturing the envelope of the short-time power
3 In the SER field, it is common to refer to the set of labeled audios as a database.

In this work, we adopt the term dataset, more commonly used in other fields of
machine learning.
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spectrum, representing the vocal tract shape. The process involves segmenting
utterances and converting them into the frequency domain using the short-time
discrete Fourier transform to obtain MFCCs. Subsequently, Mel filter banks
are employed to calculate energies in several sub-bands, followed by computing
the logarithm of respective sub-band energies. Finally, MFCCs are obtained by
applying the inverse Fourier transform.

Classification algorithms used in SER According to [3], there is currently
no consensus on a state-of-the-art algorithm for SER that performs optimally
under all conditions. It is recommended to conduct preliminary research to
choose the most appropriate classification algorithm. For this reason, different
algorithms will be tested in this work to compare their performance under specific
noise conditions.

2.2 Noise in Classification Tasks

Attribute Noise Attribute noise refers to errors or corruptions in instances of
the input space X; in particular, for the SER problem, this type of noise involves
corruptions in the audio data. Attribute noise in SER has been extensively
studied. For example, [13] examines the effect of white noise, [14] explores the
impact of reverberation and Gaussian noise, and [15] presents a survey of SER
in natural environments, which often include background noise.

In [16], a strategy is proposed to handle attribute noise for general machine
learning tasks (tabular data), achieving new state-of-the-art results. Their
strategy aims to correct attribute noise rather than deleting samples with
potential noise. This approach is proposed because, as discussed in [12], removing
noisy samples can eliminate noise but may also discard valuable information in
some cases. Similar approaches, where noisy samples in unstructured data are
corrected rather than removed, can be found in [14]. In this study, white noise
in audio is handled with speech enhancement, followed by feature extraction to
convert the problem to tabular classification.

Class Noise Class noise refers to errors or corruptions in the attribute class,
i.e., having samples mislabelled. In the context of SER, this means having
audio samples in the dataset labelled with an inappropriate emotion. [12] found
that class noise is generally more harmful than attribute noise for classification
tasks. This may be due to the fact that a mislabelled sample (xi, yi) completely
meaningless, which is the information received by the algorithm during training.

In [17], SVMs were used to detect suspicious labels and correct them through
expert supervision. This method showed improvement but may be unsustainable
at a large scale. Other strategies involve eliminating noisy samples and are
called filters. Examples of these filters include edited nearest neighbor, which
removes samples inconsistent with their k nearest neighbors; filters based on
the voting of ensemble methods; or filters that eliminate misclassified samples
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through cross-validation. For a more comprehensive review of filter methods,
see [18].

According to [16], the two main strategies to handle both attribute and
class noise are using robust algorithms (algorithms not sensitive to noise) or
preprocessing techniques (such as filters).

3 Research Goal

3.1 Importance of Study Class Noise in SER Problem

In [5], it is mentioned that creating a SER dataset is expensive due to the need
for actors. This limits the size of acted and elicited SER datasets. For this reason,
deep learning approaches for SER have not yet reached their full potential [6].
These aspects highlight the need for new, scalable methods for creating SER
datasets. For example, [19] exploits the current emergence of large-scale video
available on social networks by implementing cross-modal techniques (audio and
video in this case) and pseudo-labeling methods. In [6], data is augmented by
using segments of labeled samples, but assigning the class of the utterance to the
segment can create class noise. To address this problem, they use an iterative
self-training method to label segments.

Another source of class noise in SER frequently discussed in the literature is
the subjectivity of label annotators [20]. For all these reasons, class noise in SER
problems has become an area of study. Current work addressing class noise in
SER has improved performance by around 2% using BLSTM models [20]. Until
recently, class noise in SER has been neglected, and there is still much work to
be done. To our knowledge, there is no research on controlled class noise in SER
across a significant number of datasets.

Objectives: This work has two primary objectives. The first is to study the
robustness of several machine learning algorithms under controlled class noise
conditions in the SER problem. We limit our study to well-known traditional
algorithms, namely support vector machines (SVMs), random forest (RF),
gradient boosting classifier (GB), AdaBoost, K-NN, and Ridge classifier. The
second objective is to present a preprocessing method that satisfies the condition
in Eq. (3) for specific noise levels. Finally, we compare the performance of
the previously studied algorithms and our method alongside the most robust
algorithm identified.

4 Criteria for Effective Noise Treatment

We propose the following formulation for the class noise problem, along with
key conditions for a preprocessing method that aims to mitigate noise without
discarding samples. For a single label classification dataset:

D = {X,Y} = {xi, yi}Ni=0,
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we say it’s noise free if for every xi ∈ X its label yi is equal to the ground-truth
label for that sample, we can denote this dataset as:

D0 = {X,Y0} = {xi, y
0
i }Ni=0.

Similarly, we can extent the notion of class noise in a dataset Dr by measuring
it as the fraction r of mislabelled samples, r can take values from 0 to 1; for
example, a dataset with ten percent of mislabelled samples could be express as
D0.3. By definition, it is true that for a given dataset Dr, Eq. (2) is true:

Acc(Dr) = Acc(Yr,Y0) =
1

N

N∑
i=0

δ
(
yri == y0i

)
= 1− r. (2)

Note, that Acc(Dr) presented in Eq. (2) is equivalent to accuracy, one well-known
metric to measure performance in classification tasks. In this context, we are
usign this measure (fraction of correct labels in a dataset) as a internal measure
of class noise in a given dataset. For a real scenario, we can’t calculate this
measure since Y0 is unkonwn.

A preprocessing method P (Dr) without removal of potential noisy samples,
generates a new dataset Dr̂ = (X, Ŷr) with the same samples, but some of them
are re-labeled. We propose that P is a candidate to be a good preprocessing
method for class noise treatment if it fulfills condition presented in Eq. (3), for
some noise level r over a significant amount of datasets:

Acc
(
P (Dr)

)
≥ 1− r, (3)

nonetheless, this condition is only appropiate for balanced datasets, i.e., datasets
where class distribution is highly skewed amog classes [30]. A dataset is said to
be imbalanced if its imbalance ratio (IR), see Eq. (4), is smaller than 1.5 [31]:

IR =
card

(
majority class

)
card

(
minority class

) . (4)

For a more general purpose, another metric should be used, such as balanced
accuracy, see Eq. (5), which is the average of sensitivity by classes, allowing an
equal representation of all classes. For an imbalanced dataset, there can be a
preprocessing method which fulfills the condition of Eq. (3) by misrepresenting
minority classes in the process of re-labeling. For this reason, in this work we
examine both metrics:

BAcc(Dr) =
1

|C|
∑
c∈C

1

|class c|

N∑
i=1

δ
(
yri == y0i ∧ y0i == c

)
. (5)

In Eq. (5) is the set of classes in Dr. We say, that P (Dr) is a candiadte to be
a good preprocessing method and not a actual one, since the final goal of noise
treatment in classsification can be thought as improvement in model performance
after applying P to the training set and testing in complete unseen data (test
set), and not only improving mislabelled samples inside training set.
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Table 1. Datasets used in this work. The reported cardinalities and imbalance ratios
refer only to the samples utilized in this study and may differ from those reported in
the original papers.

Dataset Cardinality Imbalance Ratio Language Type
Ravdess [22] 672 2.0 English Acted
TESS [23] 1600 1.0 English Acted
MESD [4] 574 1.0 Spanish Acted

ShEMO [24] 2737 5.3 Persian Semi-Natural
CaFE [25] 504 2.0 Canadian-French Acted

EMO-DB [26] 339 2.0 German Acted
CREMA-D [27] 4900 1.2 English Acted
EMOVO [28] 336 1.0 Italian Acted

EmoMatchSpanishDB [5] 1318 1.8 Spanish Elicited
URDU [29] 400 1.0 Urdu Natural

5 Experimental Framework

5.1 Algorithms’ Robustness

The data for this study comprised 10 supervised SER datasets, as shown in Tab.
1. We only considered the emotions common to all datasets: anger, happiness,
neutral, and sadness. All audio files were downsampled to a frequency of 16
kHz and converted to mono-channel signals. After standardizing the audio
signals, 13 Mel-frequency cepstral coefficients (MFCCs) were extracted from
each, transforming the unstructured data into tabular form. Various levels of
class noise were introduced: 0%, 5%, 10%, 20%, 30%, 40%, and 50%. Noise
was injected randomly, ensuring each class contained approximately the same
amount. This resulted in a total of 60 datasets, with 10 datasets per noise level.
This approach allowed us to control the noise levels in datasets assumed to be
correctly labeled, enabling an analysis of the effects of varying noise levels on
different algorithms.

To ensure a fair comparison between algorithms, we tested various
hyperparameter instances for each classification scenario (SER dataset and noise
level). A grid search was used to find the optimal set of hyperparameters.
Despite using a substantial number of SER datasets, we performed 3 × 5-fold
cross-validation. Within each 5-fold cross-validation, different noise injections,
folds, and random states for algorithms were employed. Balanced accuracy was
chosen as the evaluation metric, given that half of the datasets are imbalanced
(see Tab. 1). The grid search space was selected based on prior knowledge of key
hyperparameters for regularization in each algorithm.

5.2 Preprocessing Method Proposed

After evaluating the robustness of the algorithms, we found that SVM often
performed the best, particularly with a radial basis function (RBF) kernel and
a regularization parameter C = 10. The second-best algorithms were RF and
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Table 2. Overall results of the preprocessing method’s impact are summarized as
follows: Datasets where improvements were observed show the number of cases (out
of 10) with improved correct labels. The overall change represents the average change
across all datasets for each noise level.

Level of Noise 0 5 10 20 30 40 50 (%)
Datasets Improved 0 5 6 7 9 9 10

Overall Change -4.6 -2.2 -0.1 4.0 10.0 13.2 17.8 (%)

k-NN, which showed similar performance across all noise levels. However, k-NN
can be implemented using KD-trees, making it significantly faster than RF.
Therefore, we decided to use both algorithms in an ensemble approach to detect
noisy samples and re-label them. The process is as follows:

Given a noisy dataset Dr with an unknown noise level r and unknown
ground-truth labels Y0 (which are not available in real scenarios), two models,
hsvm and hknn, are trained on (X,Yr). These models are then used to estimate
the emotion for each sample across Dr, re-labeling them as indicated in Eq. (6):

P (xi) =

{
hsvm(xi) hsvm(xi) = hknn(xi)

yri otherwise
. (6)

To test whether the proposed method is a valid class noise corrector, we
applied it to the 10 datasets under all noise conditions. We assessed whether
the similarity, based on 2 and 5, between Ŷr and Y0 improved compared to Yr

and Y0.
To evaluate whether the proposed method results in actual improvements in

model performance, rather than merely correcting a fraction of mislabeled data,
we tested the method within the same cross-validation framework used to assess
algorithm robustness. Specifically, for each dataset Dr, 5-fold cross-validation
was employed. In each iteration, the preprocessing method P was applied to the
four training folds. An SVC was then trained on the re-labeled training folds
and used to estimate emotions in the testing fold. Performance was measured
using the unknown Y0. This process was repeated three times for each dataset
and noise level, each time with different random injections and folds.

6 Results and Discussion

6.1 Algorithms Robustness

Results for the best hyperparameter configurations tested for each algorithm
are shown in Fig. (5), along with the results of the preprocessing method. We
found that the robustness of some algorithms depends significantly on the chosen
hyperparameters. Fig. (2) displays the performance for two instances of k-NN
and SVMs.

As shown in Fig. (2), k-NN’s performance does not vary significantly with the
number of neighbors, k. Although a greater number of neighbors is required as
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Fig. 2. Performances for each algorithm and different evaluations at one
hyperparameter are displayed with double error bars. Thicker, smaller error bars
represent the standard deviation of the mean performance across all datasets for
each 5-fold cross-validation. Larger error bars represent the standard deviation across
all datasets.

noise increases, the performance changes are less pronounced compared to SVMs
with respect to the regularization parameter C. For each model, we selected the
best hyperparameter configuration across all datasets and noise levels. Generally,
SVM was the best algorithm for all noise levels, particularly with balanced class
weights, an RBF kernel, and C = 10. For some datasets, k-NN and random
forest performed best at low noise levels. Our results are publicly available on
GitHub for more detailed analysis.

6.2 Impact of Preprocessing Method at Different Levels of Noise

To measure the effects of the preprocessing method under noisy conditions, we
estimate the changes in the percentage of correct labels, as defined in Eq. (2).
Fig. (3) shows the changes in extreme cases: no noise and 50% noise injection.

It can be seen that the preprocessing method improves the labeling of
samples with 50% noise across all datasets but mislabels samples when applied
in noise-free conditions. A summary of the results is provided in Tab. (2).

From Tab. (2), it is evident that the proposed method shows improvements
for conditions with at least 20% noise injection. The enhancements in correct
labels are more significant under high noise conditions compared to the decreases
observed in low noise conditions.
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Fig. 3. The percentage of correct labels shown is the average from repeating the process
three times for each dataset and noise level.

To assess whether these improvements compromise minority classes, we
compared the percentage changes between BAcc(Yr,Y0) and BAcc(Ŷr,Y0).
The results, shown in Fig. (4), are consistent with those presented in Tab. (2).

According to Fig. (4), the proposed method may not be suitable for low
noise levels (0-10%) due to a decrease in similarity to the ground-truth labels.
For moderate noise levels (20-30%), the method appears to be effective, with
most datasets showing improvement. Notably, the ShEMO dataset, which is the
most imbalanced with a ratio of 5.3, also shows improvement at these noise
levels, suggesting that the method may be resilient to imbalanced data. Finally,
for higher noise levels (40-50%), the proposed method delivers better and more
consistent results across all datasets.

6.3 Improvement in Model’s Performance on Cross Validation
Settings

After confirming that the proposed method is a viable preprocessing option
for certain noise levels according to our definition, we need to ensure that
these changes result in actual improvements in model performance. We followed
the procedure described in the experimental framework. Results are shown in
Fig. (5), along with the most robust configurations for each algorithm studied.
Fig. (5) indicates that the proposed method performs worse under noise-free
conditions, falling below even SVMs and most other algorithms. At 5% noise,
the method remains nearly resilient and shows performance close to that of
SVMs. At 10% noise, the proposed method achieves the best results compared
to all other algorithms. For higher noise levels, while the performance of the
preprocessing technique begins to degrade, it remains significantly better than
that of all other algorithms.
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Fig. 4. Percentage changes in balanced accuracy serve as an internal measure for
dataset Dr, estimating the similarity between Yr and Y0 before applying the
preprocessing method and Ŷr and Y0 after applying the method.

7 Conclusions and Future Work

In this work, we conducted a systematic study on the effects of noise in the
Speech Emotion Recognition (SER) problem. Our primary contributions are
twofold. First, we established that among the algorithms studied, Support Vector
Machines (SVM) consistently deliver superior performance across both low and
high noise levels. Second, we proposed a preprocessing technique that effectively
outperforms traditional machine learning algorithms in high noise conditions.

The proposed method has shown promise in enhancing data quality for
SER datasets. It significantly improves performance in noisy environments,
outperforming all other algorithms studied, showing its potential as a valuable
tool for preprocessing in real-world applications.

Future work will focus on enhancing the generalizability of this method
for cross-corpora problems, where models are trained and tested on datasets
with different distributions, such as actors or speakers from various regions
or languages. We aim to investigate how well this preprocessing technique can
support a broader range of algorithms, including neural networks, which were
not covered in this study. By extending the scope of our research, we hope
to improve the robustness and adaptability of SER systems across diverse and
challenging conditions.
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Fig. 5. Performance results for each algorithm are displayed with double error bars.
Thicker, smaller error bars represent the standard deviation of the mean performance
over all datasets for each 5-fold cross-validation. Larger error bars represent the
standard deviation across all datasets. The proposed method is labeled as ’PM’.
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Abstract. Liquid crystals are fluids that show certain amount of order
in the orientation and position of their molecules in contrast with simple
fluids where both types of order are absent. They have been subject of
numerous studies due to their technological relevance. In this research
work, it is proposed a method for simulating the liquid crystal phase
with the simplest symmetry, known as the nematic phase. The method
is based on particles that interact in independent sets, which allows to
propose programming it in parallel. This is done in Graphic Processing
Units (GPUs) on NVIDIA’s CUDA architecture. It is shown that the
method allows to simulate the appearance of molecular order on repro-
ducible conditions. It is also clearly exhibited that the parallel procedure
has a much higher performance than that given by the serial version of
the same simulation algorithm.

Keywords: Liquid crystal, simulation, GPU parallelization.

1 Introduction

Introductory physics describes three states of matter: solid, liquid, and gas, which
are differentiated by the amount of order shown by their molecules [5]. Usually,
materials transition between the solid and liquid states without an intermediate
stage. However, in the late 19th century, Freiderich Reinitzer discovered that
intermediate phases can exist between these two states [4]. A few years later,
Otto Lehmann named these phases as we know them today: liquid crystals [4].

The applications of liquid crystals include displays for televisions, cell phones,
and computers known as LCDs (Liquid Crystal Displays); tunable wavelength fil-
ters; resonant cavities for tunable lasers; thermometers, and smart windows [15].
Recent research suggests their use in detecting pathogens, antigens, cancerous
tumors [21, 22], as well as in controlling the trajectory of microorganisms [16].

A vast variety of liquid crystals is known. All of them are formed by molecules
whose symmetry is not spherical, e.g., elongated rod-shaped molecules as those
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of N–(4–Methoxybenzylidene)–4–butylaniline (commonly referred to as MBBA)
illustrated in Figure 1 (a), or 4–Cyano–4′–pentylbiphenyl (customarily known as
5CB) illustrated in Figure 1 (b). When atomistic details are not relevant, these
molecules can be modeled as rigid rods as those illustrated in Figure 2.

(a) (b)

= Carbon

= Hydrogen

= Oxygen

= Nitrogen

Fig. 1. Two elongated molecules that form liquid crystal phases: MBBA (a) and 5CB
(b). Their constituents atoms can be identified by the levels at the bottom. The central
part of both molecules contains benzene rings (flat hexagons with six carbon atoms)
that give them a rather rigid structure.

The liquid crystal phase with the simplest symmetry is known as the nematic
phase. The molecular arrangement in a nematic liquid crystal (NLC) is schemat-
ically illustrated in Figure 2, where it is compared against that of the crystal
and isotropic liquid phases. In a crystal, molecules are perfectly positioned at
the nodes a periodic lattice and all of them point along the same direction.
In the completely opposite case, corresponding the a simple or isotropic liquid,
molecules move arbitrarily through the sample and they point in every direction
with the same probability. In a NLC, the centers of mass of the molecules move
arbitrarily, as in a simple liquid, but the molecular axes remain oriented around
a common axis known as the director, represented by a unit vector, n̂, [11]. Thus,
NLCs are states of matter with an intermediate order between that of crystal a
that of usual liquid. The reader is referred to reference [9] (in Spanish) where
concepts and mathematical aspects of liquid crystal phases are discussed in an
introductory manner.

For the previously mentioned reasons, liquid crystals are of great interest
in applied sciences and materials engineering, where computational simulations
have played a crucial role in understanding their properties due to their ability to
test a wide range of system’s parameters and to handle conditions that are hard
to achieve experimentally [1]. Recently, an algorithm known as Nematic Multi-
particle Collision Dynamics (N-MPCD) has been proposed, which describes the
NLC as a system of particles that carry an orientation vector [19]. Periodically,
the particles are allowed to interact with those in their vicinity. To do this, the
simulation space is subdivided into contiguous cubic cells within which indepen-
dent operations are performed, suggesting that the method could be parallelized.
Two alternative variants of N-MPCD are known. One is due to Shendruk and
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Temperature, T
TS–N TN–I

Crystal NLC Isotropic Liquid

n̂

Fig. 2. Schematic of the molecular order in three phases of matter: crystal (left), NLC
(center), and isotropic liquid (right). These phase occur as function of temperature
where TS−N and TN−I indicate transitions from solid to nematic and from nematic to
isotropic liquid, respectively. Vector n̂ represents the average molecular orientation in
the liquid crystal phase.

Yeomans [19] and is based on a collision operator that promotes reorientation
of particles dictated by a local mean-field potential to achieve nematic order.
The other one, due to the Mazza and coworkers [14], simulates nematic order by
incorporating explicit hydrodynamic equations of liquid crystals.

N-MPCD is an extension of a simple fluid simulation method known as Multi-
particle Collision Dynamics (MPCD), for which various algorithms that operate
in parallel have been proposed. One of the first was developed by Petersen et
al., who adapted the method to run on multiple processors of a Cray XT3 com-
puter [17]. Westphal et al. have developed an MPCD implementation based on
graphics processing units (GPUs), achieving a performance gain of up to two or-
ders of magnitude compared to a comparable version on central processing units
(CPUs) [23]. Howard et al. have presented an open-source implementation of the
algorithm that scales to run on hundreds of GPUs [13, 12]. Halver et al. have
used heterogeneous GPU nodes to parallelize MPCD in an implementation based
on Cabana [7]. More recently, Ratan has created parallelized simulations based
on an hybrid Molecular Dynamics–MPCD scheme to investigate the behavior of
active matter systems [18].

The aim of the present work is to parallelize the N-MPCD method, in the
Shendruk and Yeomans version, taking advantage of the fact that it works with
quantities representing particles grouped in discrete and independent spaces. The
problem to be solved consists of performing operations on the properties of the
particles that make up the system simultaneously and independently when nec-
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essary, as well as performing parallel convergent operations that require particles
grouped in the system’s cubic cells. All of this must be done while respecting the
physical and mathematical rules that produce nematic behavior in the system.
The goal is for this simulation to run on GPUs. Additionally, the performance of
this parallel implementation is expected to surpass that of a previously developed
serial version [8, 10].

One of the main challenges in developing the GPU-parallelized N-MPCD
method was that many processing threads needed to write to the same memory
section simultaneously. This problem was solved by using a processing thread
for each collision cell, dedicated exclusively to averaging the properties of the
particles contained within it. This implementation improved computation time
by an order of magnitude compared to the serial version.

The content of this article is as follows. In Section 2, the basic characteristics
of the N-MPCD algorithm will be described. Subsequently, in Section 3, the
parallelization of the method on GPUs will be discussed. In Section 4, the main
results of our research will be presented, and in Section 5, conclusions will be
synthesized and possible future work will be proposed.

2 Simulation Method

The simulation system consists of point particles that move within a cubic box
with side length L, which is considered an integer multiple of the unit length a.
All particles have the same mass m. Their positions and velocities are represented
by the vectors ri and vi, with i = 1, 2, . . . , N . Each particle has an associated unit
orientation vector, ûi, which will serve to generate the characteristic orientation
order of NLCs. The vectors ri, vi, and ûi are considered continuous functions
of time, t, and will be updated to generate system’s dynamics. The algorithm
responsible for this consists of two steps known as the propagation step and the
collision step. Both will be described below.

2.1 Propagation Step

Particles move in uniform rectilinear motion for a fixed time interval ∆t. This
updates the position of each particle according to the equation

ri (t+∆t) = ri (t) + vi (t)∆t. (1)

This displacement implies that some particles will leave the simulation box.
To keep the number of particles constant and approximate macroscopic behavior,
periodic boundary conditions are imposed. Thus, each particle that exits one side
of the box is replaced by another that enters from the opposite side with the
same velocity and orientation. This is achieved through the transformation

xi −→ xi − L floor
(xi

L

)
, (2)

where the floor function, floor (x), that returns the largest integer less than or
equal to x, and xi is the first Cartesian component of ri. A similar transformation
applies to components yi and zi. 22
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2.2 Collision Step

After propagation, particles are grouped into cubic cells of volume a3, distributed
in a cubic lattice which fills the entire simulation box. These cells are called
collision cells because the particles that end up within the same cell participate
in an exchange of velocities and orientations that is equivalent to a fictitious
multiple collision among them. At every collision step the number of particles in
each collision cell could be different since particles move from one collision cell
to another during the propagation step. At any given instant, the physical fields
of the system can be calculated using the particles located within each collision
cell.

The new velocities are assigned using the Andersen thermostat rule [6],

vi (t+∆t) = vc(t) + ξi − ξc, (3)

where

vc(t) =
1

N c

Nc∑
i=1

vi, (4)

is the center of mass velocity in the cell where the particle is located, with N c

being the number of particles in that cell.
In addition, in equation (3), ξi is a random contribution taken with proba-

bility

P (ξi) =

(
m

2πkBT

) 3
2

exp
(
− m

2kBT
ξi · ξi

)
, (5)

which corresponds to the velocities of molecules in a fluid at temperature T ,
with kB being the Boltzmann constant.

In equation (3),

ξc =
1

N c

Nc∑
i=1

ξi, (6)

is a term that guarantees the local conservation of linear momentum after ve-
locity update.

To update orientations, it is considered that the particles within the same
collision cell interact with the director produced by themselves, n̂c. To select the
new orientations of the particles in the collision cells, the probability distribution
is considered [19]

P (θi) sin θi dθi = C0 exp

(
3USc

2kBT

(
cos2 θi −

1

3

))
sin θi dθi, (7)

where C0 is a normalization constant, θi is the angle between ûi and n̂c, U is
a scalar quantity referred to as the nematicity, which defines the order in the
simulated phase, and Sc is the so-called order parameter in the cell, which is the
largest eigenvalue of the tensor order parameter at the cell,

Qc =
1

2N c

Nc∑
i=1

(3ûiûi − I) . (8)
23
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Sc measures the amount of orientational order and takes two extreme values,
Sc = 0, when the fluid is completely disordered, and Sc = 1, when the alignment
of the particles is perfect. In addition, n̂c is the eigenvector of Qc corresponding
to Sc.

The probability density in equation (7) has the form of a canonical law based
on the Maier-Saupe mean-field energy. It is known as the Dawson distribution
and is illustrated in Figure 3 for different values of U . It can be seen that when U
is small, the probability of the angles tends to be uniform, implying a disordered
phase; while as U increases, the most probable angle is close to 0, indicating
alignment of the particles around n̂c.

Fig. 3. Dawson distribution, equation (7), for diverse values of the quantity USc nor-
malized with respect to kBT .

To validate the numerical implementation, the orientations of the resulting
particles were taken in tests with different values of U . From these orientations,
histograms were constructed that fit very well with the theoretical distribution
given by equation (8), as shown in Figure 4.

3 Parallelization

3.1 General Considerations

The program was written in C and the CUDA API. Graphic cards were chosen
instead of the machine’s central processor because the former typically have
more processing threads. The computing resources used for this research and the
execution of numerical tests were: a computer with a Linux operating system,
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Fig. 4. Dawson distribution for diverse values of the quantity USc normalized with
respect to kBT . Curves are obtained from equation (7) whereas symbols correspond
to normalized frequencies on samples of 81, 920 angles generated by the numerical
implementation.

equipped with a Tesla T4 graphics card that has 2, 560 CUDA threads, and an
Intel Xeon E5 2640 CPU with 16 processing threads and an x86_64 architecture.

When analyzing the various stages that comprise a simulation step in the N-
MPCD method interval ∆t, we can see that these fall into one of two categories:

1. exhaustive stages, where each particle is analyzed individually; and
2. summarized stages, where the system is analyzed at the collision cell level.

Armed with this information, we can see that we have two minimal computing
units, the particle and the collision cell, depending on the simulation stage we
are in. To maximize the amount of work carried out in parallel, the number of
processing threads during the program execution is chosen to be equal to the
minimal computing unit.

To store the processed information and avoid memory collisions, two large
arrays of structures corresponding to the two minimal computing units were
created. It is worth mentioning that older versions of CUDA do not support the
use of double-precision floating-point variables. However, in our tests, we noticed
that the truncation error produced by using float variables is too large to obtain
reliable simulation results. Therefore, the produced code cannot be executed on
older GPUs [20].

Another consideration to take into account is the limitations of the x86_64
computer architecture. In our case, we encountered two very important ones,
one technical and one historical. The technical limitation is that in the x86_64
architecture, graphics memory is different from main memory, so all information
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to be computed on the GPUs must be transferred between them. The historical
limitation has to do with the hardware restrictions that existed when the PC
standard was proposed, as on certain equipment, the number of memory ad-
dresses available for the GPU is less than what would be necessary to index all
the graphics memory to the computer’s data bus.

To maintain compatibility with x86_64, NVIDIA GPUs do not expose all
their memory to the data bus simultaneously. Instead, they expose only a small
memory window, which can be shifted at the processor’s request to allow read-
ing and writing of the entire graphics memory. This procedure is schematically
illustrated in Figure 5. While this solution allows graphics cards to have large
amounts of memory, it makes the data transfer between RAM and graphics mem-
ory a slow process that consumes CPU time and, therefore, should be avoided
as much as possible.

GPU memory

Memory visible to the data bus

Fig. 5. Visual representation of the graphics memory in modern systems. The green
rectangle represents all the graphics memory inside the GPU. The CPU can only read
or write information inside the blue window. The CPU can move the window in order
to write the whole graphics memory.

Lastly, it should be noted that all functions executed within the GPU must be
of the void type, so data transfer and error conditions between functions must be
handled via pointers [2]. Taking into account the general considerations above, it
was decided to implement the parallelized N-MPCD algorithm according to the
block diagram shown in Figure 5(a). For comparison purposes, the corresponding
diagram for a serial version is also shown in Figure 5(b). The main steps of the
method are detailed below.

3.2 Initialization

The initialization process is exhaustive, where each particle in the simulation
system is randomly assigned initial values of position, orientation, and velocity.
Fortunately, CUDA includes functions for generating random numbers using var-
ious distributions. For each numerical test, random number series were generated
from seeds taken from the computer’s clock.
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Fig. 6. Block diagram of the N-MPCD method, parallelized (a) and serial (b). The
collision step in both cases goes from the calculation of the particles average orientation
to the normalization. The serial algorithm runs this operations on a single processing
thread.

3.3 Propagation

The movement stage remains an exhaustive process where the position of the
particles within the simulation system is updated assuming uniform rectilinear
motion. This is done by simply multiplying the velocity by ∆t and adding the
result to the current position of the particle for each of the Cartesian axes, as
indicated by equation (1).

Boundary Conditions The N-MPCD method assumes that the simulation
system is surrounded by identical copies of itself. Therefore, if a particle exits
the system, it will be automatically replaced by an identical one from one of the
adjacent systems. In practice, due to the finite nature of computing resources, the
same particle is reintroduced into the system programmatically by implementing
equation(2).

3.4 Collision

The collision stage, unlike the previous ones, is no longer exhaustive. To obtain
the information that describes the current state of the collision cells, it is neces-
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sary to first average the orientation and velocity of all the particles within them.
Ideally, while the number of processing threads remains equal to the number of
simulated particles, each particle would add its own data to the average of its
corresponding cell so that after thread reduction, each collision cell performs the
final division. The problem with this implementation is that it inevitably leads
to race conditions between the different processing threads writing data to the
same variable. Traditionally, this would not be an issue as it is easily solved by
implementing a semaphore [3]. Unfortunately, the current state of the CUDA
API does not include semaphore functions.

To avoid race conditions, we chose to average the particle data after thread
reduction, ensuring that each collision cell sums its own average. This way, we
avoid having multiple threads attempting to write to the same variable. Although
this implementation is not as efficient as the one previously described, it still
performs parallel work, making it faster than a completely serial implementation.

Calculation of the Director Vector To reorient the particles within each col-
lision cell, the N-MPCD method requires calculating the director vector around
which the particles will rotate. This is clearly demonstrated by equation (7),
which depends on the angle each particle forms with its local director.

As mentioned, the director is calculated by obtaining the eigenvalues and
eigenvectors of the order parameter tensor, Qc, which is defined by equation (8).
The scalar order parameter in the cell, Sc, is the highest eigenvalue of Qc, while
the corresponding eigenvector is the local director n̂c.

As we can see, calculating Qc leads us once again to a race condition problem.
In this specific case, CUDA provides a set of so-called atomic functions, which
are designed to perform the four basic arithmetic operations in parallel for the
different types of numerical variables that exist in the C language [2].

Although atomic functions do a good job of handling possible collisions be-
tween processing threads, in the numerical tests carried out in this project, it
was noted that when the size of the simulated system exceeds 83 particles, the
number of collisions becomes so large that the GPU has to dedicate a significant
amount of time resolving them before it can perform the summation. In the long
run, this causes the execution of the parallel program to be slower than the serial
version. Therefore, we opted to perform this part of the program serially, once
again choosing a suboptimal implementation but maintaining the integrity of
the results.

Assignment of New Orientations Once the calculation of Sc and n̂c is
completed, we obtain new orientations for the particles from the Dawson distri-
bution, equation (8). New velocities are also assigned to them from equations
(4) to (6).

3.5 Writing to Disk

Finally, the obtained results are written to the hard disk. Due to physical con-
straints in the movement of read/write heads in most hard disks, this is not
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really a parallelizable process. However, it is possible to generate an additional
processing thread that writes data to disk while the GPU continues executing
the program.

4 Results

The numerical tests performed aim to establish the physical validity of the
method and its performance compared to an existing serial version.

4.1 Nematic Behavior

The method allows observing an orientationally ordered phase for certain values
of the nematicity, U . In a first set of simulations, tests were performed for a
cubic system with side length L = 32 a, where we maintained an average of
20 particles per collision cell. The average order parameter was calculated for
different values of U = 1, 2, 4, 8, 16, 20, and 32 kBT .

The results obtained are illustrated in Figure 7, where a transition from
disordered states, where Sc ∼ 0, to ordered states with S ∼ 0.8 is observed. The
former correspond to simple fluid phases and are obtained for U ≲ 5 kBT . The
ordered states are observed when U > 5 kBT and correspond to nematic phases.

Fig. 7. Behavior of the orientational order of N-MPCD systemas as function of U . Re-
sults show that systems achieve order as U increases. A slight difference between results
from the serial and parallel implementations can be observed, which is attributable to
the numerical precision used in each case.

Another way to understand this behavior is through Figure 8, which illus-
trates the state of the simulated system using the GPU-parallelized code for dif-
ferent values of U . Two completely disordered states can be seen when U = 1 kBT29
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and U = 4 kBT , cases 7(a) and 7(b), respectively. On the other hand, the system
acquires orientational order for values U = 8 kBT and U = 16 kBT , cases 7(c)
and 7(d), respectively.

Fig. 8. Ordered and disordered phases simulated by N-MPCD parallelized in GPUs.
(a) Disordered sate at U = 1 kBT . (b) Disordered sate at U = 4 kBT . (c) Nematic state
at U = 8 kBT . (d) Nematic state at U = 16 kBT . Small bars indicate the local director
field whereas the color scale at the bottom represents the local order parameter. Notice
that orientation vectors correspond to local averages in the collision cells. They are not
orientations of the individual particles of the method. This is why they are distributed
over the same positions.

4.2 Performance

To estimate the performance of the developed implementation, we considered
the computation time, as traditional performance comparison methods depend
on the similarity in the architecture of the processors where the code is executed.
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The first comparison was made between a series of simulations where the
nematicity was modified, keeping the parameters fixed: L = 32 a, 20 particles on
average per collision cell, ∆t = 0.1, and kBT = 1.0, and m = 1. The reported val-
ues are the result of a sample of 100 consecutive simulations for each nematicity
value. The computation time shown in Table 1 is the average over these samples.
It is worth mentioning that the computation times include contributions from
writing to disk, which aims to save the information corresponding to the state
of the system (value of the order parameter in each collision cell) after each step
of the algorithm. This file writing can be considered optional as its purpose was
to allow visualization of the system configuration.

Table 1. Average computing times of the parallel N-MPCD method, using different
values of U whit parameters Nc = 20, ∆t = 0.1, kBT = 1 y m = 1.

Nematicity (U) Computing time (h:m:s)
1 00:02:15
2 00:02:15
8 00:02:20
16 00:02:17
32 00:02:17

Execution times were also calculated for systems of different sizes with 20
particles on average per collision cell and fixed U = 1 kBT . The results obtained
in this case are shown in Table 2 for the serial implementation of the N-MPCD
method, whereas Table 3 reports on simulation times obtained with the parallel
implementation. Notice that the number of collision cells used to assess the
performance of the method varied from 83 = 512 to 643 = 262 144, whereas the
total number of simulated particles varied from 10 240 to 5 242 880, respectively.

Table 2. Average computing times of a serial implementation of the N-MPCD method
for different values of N , with parameters U = 1, Nc = 20,∆t = 0.1, kBT = 1 and
m = 1.

System size (N) Computing time (h:m:s)
83 00:00:15
163 00:01:32
243 00:05:39
323 00:07:49
483 00:27:05
643 01:25:01

It was observed that the performance of the parallel algorithm is much supe-
rior to its serial equivalent. This behavior is emphasized when simulation times
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Table 3. Average computing times of a parallel implementation of the N-MPCD
method for different values of N , with parameters U = 1, Nc = 20,∆t = 0.1, kBT = 1
and m = 1.

System size (N) Computing time (h:m:s)
83 00:00:02
163 00:00:16
243 00:00:46
323 00:02:15
483 00:05:49
643 00:12:53

are compared graphically as in Figure 4.2. In the most significant cases, the sys-
tem sizes were L = 48 a and L = 64 a, with the reduction in computation time
achieved by the parallelized method being approximately 80% and 85%, respec-
tively. In this regard, it can be concluded that our implementation constitutes a
solid first step in the development of a liquid crystal simulation method that, in
the near future, could serve as a robust tool for the analysis of such systems.

Since the method developed in this work deals with non-sequential program-
ming, it is convenient to show the algorithm’s scaling, also known as speedup,
as well as its efficiency. On the one hand, speedup is defined as the ratio of
serial to parallel computation times. On the other hand, efficiency is defined as
the ratio of speedup to the number of processing threads. The precise values of
speedup and efficiency of the method developed in this research are shown in
Table 4, which confirms the high performance achieved by the GPU-parallelized
implementation.
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Fig. 9. Comparison between simulation times of the parallel and serial programs (blue
and red bars, respectively) for different system sizes quantified by the total number of
collision cells.
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Table 4. Speedup and efficiency of the parallel implementation of the N-MPCD method

System size (N) Speedup Efficiency
83 2.17 4.0× 10−3

163 1.49 3.6× 10−4

243 2.30 1.6× 10−4

323 3.12 9.5× 10−5

483 4.76 4.3× 10−5

643 41.67 1.5× 10−4

5 Conclusions

In this research work, a GPU-parallelized algorithm was implemented to simulate
nematic liquid crystals (NLC). The approach used to reproduce the physical
characteristics of the nematic phase was inspired by the Nematic Multiparticle
Collision Dynamics (N-MPCD) method, which combines particle movements
with collision rules to satisfy equilibrium conditions and control the orientational
order characteristic of NLCs. Collisions between particles occur in limited and
independent spatial regions, allowing operations to be distributed in parallel.
The parallelized development was based on NVIDIA technology. The simulations
were executed on Tesla T4 cards with 2,560 processing threads, on a computer
with a Xeon E5 CPU and x86_64 architecture.

The advantages of the developed code include a significant reduction in com-
putation time and the ability to simulate systems with more particles compared
to a serial version of the algorithm. Specifically, the numerical tests performed
resulted in a reduction of computation time by an order of magnitude when com-
pared to tests of a serial implementation. Though, in principles, this reduction
has to be compared with the two orders of magnitude gain reported for other
MPCD implementations based on GPUs [23], it has to be stressed that such
implementations do not simulate fluids with nematic features. In addition, it is
worth emphasizing that using a GPU with more processing threads could be
expected to result in even greater time reductions. Notably, even in the largest
systems, GPU memory was not an issue during the method’s execution.

Due to the complexity of the dynamics of liquid crystals, the code does not
incorporate some of the steps proposed in the original N-MPCD algorithm ref-
erenced in [9]. Our implementation does not include the coupling steps between
flow and orientation variables. This coupling refers to the fact that in a real liq-
uid crystal, the flow can induce director reorientation and a change in molecular
orientation can induce flow.

Flow-induced reorientation can be incorporated in terms of the spatial deriva-
tives of fluid velocity, which are estimated using finite differences between the
velocities of different collision cells. These spatial changes in velocity impose
torques on the director in each cell, thus causing reorientation. On the other
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hand, flow induced by reorientation is incorporated by transforming the angu-
lar momentum gain generated by reorientation into orbital angular momentum.
Both mechanisms require summarized and extended operations whose parallel
implementation is under development.

For future work, it is proposed to complement the method with external
forces, such as electric fields or flows, to explore the algorithm’s capability to
reproduce more complex situations, making it a reliable predictive tool for the
behavior of liquid crystals. Additionally, it is recommended to develop a graphical
interface that allows for user-friendly manipulation of simulation parameters and
to create versions of the algorithm that can run on other hardware platforms
not limited to NVIDIA technology.
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Resumen. La familiaridad que tienen los estudiantes en la actualidad con las 

tecnologías digitales impone cambios en las estrategias didácticas para la 

enseñanza de las ciencias, tecnología, ingeniería y matemáticas en la educación 

superior. Una de las estrategias más prometedoras es la gamificación, pues puede 

mejorar la motivación para lograr un aprendizaje significativo, y puede 

incorporar con facilidad el uso de herramientas digitales. Para determinar el tipo 

de jugador prevalente entre estudiantes de ingeniería se aplicó un test de Bartle 

entre una muestra representativa de 71 participantes, obteniendo una distribución 

uniforme entre cuatro categorías de tipo de jugador, con tres características 

destacadas en común. Esta información servirá para seleccionar mecánicas de 

juego apropiadas para implementar estrategias gamificadas para el aprendizaje 

de competencias de programación. 

Palabras clave: Gamificación, categorización de jugadores, STEM, 

educación superior. 

Categorization of Player Types for a Gamified Teaching 

Strategy among Engineering Students 

Abstract: The familiarity that students currently have with digital technologies 

imposes changes in teaching strategies for teaching science, technology, 

engineering and mathematics in higher education. One of the most promising 

strategies is gamification, as it can improve motivation to achieve meaningful 

learning, and can easily incorporate the use of digital tools. To determine the type 

of player prevalent among engineering students, a Bartle test was applied among 

a representative sample of 71 participants, obtaining a uniform distribution 

between four categories of player type, with three outstanding characteristics in 
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common. This information will be used to select appropriate game mechanics to 

implement gamified strategies for learning programming skills. 

Keywords: Gamification, player categorization, STEM, higher education. 

1. Introducción 

La educación en ciencias, tecnología, ingeniería y matemáticas (STEM, por sus 

siglas en inglés) se ha convertido en un pilar fundamental para el desarrollo económico 

en la era contemporánea. En primer lugar, la formación en áreas STEM proporciona a 

los individuos habilidades críticas y analíticas esenciales para enfrentar los desafíos 

tecnológicos y científicos del siglo XXI. La capacidad de resolver problemas 

complejos, el pensamiento crítico y la innovación son competencias que se cultivan a 

través de la educación STEM y son indispensables para el avance en una economía 

global basada en el conocimiento [1]. 

Es por este motivo que la inmersión en la educación STEM, particularmente a nivel 

universitario, es un motor clave para la competitividad económica de los países, al 

contribuir a la creación de una fuerza laboral altamente calificada que puede adaptarse 

rápidamente a las demandas cambiantes del mercado laboral y las innovaciones 

tecnológicas. Las sociedades que fomentan y fortalecen la educación en estos campos 

son más capaces de desarrollar industrias tecnológicamente avanzadas, impulsar la 

investigación y el desarrollo, así como atraer mayores inversiones. Esto, a su vez, 

fomenta la generación de empleos y promueve un crecimiento 

económico sostenible [2]. 

La educación superior se enfrenta, sin embargo, a desafíos que enfatizan la necesidad 

de reconsiderar los métodos tradicionales de instrucción debido a la creciente 

alfabetización digital de los estudiantes.  Tradicionalmente, la educación ha sido 

conceptualizada como un proceso de instrucción presencial con el objetivo de apoyar y 

desarrollar al máximo la personalidad y el potencial natural de los estudiantes. Este 

ideal educativo no ha cambiado en la actualidad, aunque los medios y canales de diseño 

del proceso educativo han tenido que adaptarse acorde a los cambios sociales y 

tecnológicos, para satisfacer las expectativas de los nativos digitales que ocupan las 

aulas hoy en día [3].  

Debe tomarse en consideración que, si bien los alumnos en la actualidad pueden ser 

considerados como nativos digitales en referencia al manejo de dispositivos 

electrónicos tales como smartphones, tablets, laptops, etc., esto no significa 

necesariamente que se adaptarán naturalmente a cambios en el modelo educativo que 

involucren dichas tecnologías. Sin embargo, con un planteamiento didáctico adecuado, 

es perfectamente viable instrumentar actividades de aprendizaje significativo en las 

aulas de la educación superior para la adquisición de competencias relacionadas con las 

STEM [4], mediante el uso de las herramientas digitales a las que tienen acceso 

comúnmente los estudiantes. 
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2. Antecedentes 

En la actualidad los estudiantes manifiestan diferentes patrones de pensamiento y 

procesan la información de manera diferente a generaciones anteriores en virtud de su 

familiaridad con el entorno digital de las computadoras, Internet y los videojuegos. 

Estos nativos digitales buscan, interactúan, crean, aprenden y socializan de formas 

diferentes [5], debido a toda una vida de exposición a las tecnologías de la información 

y comunicaciones (TIC). 

Es por esta razón que, en la enseñanza de la ingeniería, es necesario el uso de 

estrategias didácticas en las instituciones de educación superior, que tomen ventaja de 

las herramientas digitales que ofrecen las TIC para mejorar la experiencia educativa y 

los resultados de aprendizaje. Estas herramientas digitales permiten la creación de 

entornos de aprendizaje interactivos y dinámicos que pueden simular situaciones reales 

de ingeniería. Por ejemplo, software de simulación y modelado 3D permiten a los 

estudiantes experimentar y visualizar conceptos complejos, como la dinámica de 

fluidos, el comportamiento estructural o los circuitos eléctricos, en un entorno 

controlado y seguro. Estas simulaciones facilitan la comprensión y aplicación práctica 

de teorías abstractas, mejorando la retención y la capacidad de resolución de problemas. 

También debe considerarse el uso de plataformas digitales de aprendizaje, tales 

como los sistemas de gestión del aprendizaje (LMS), que ofrecen recursos y materiales 

didácticos accesibles en cualquier momento y lugar, lo que fomenta el aprendizaje 

autónomo y flexible. Los estudiantes pueden acceder a conferencias grabadas, 

tutoriales en video, artículos académicos y ejercicios interactivos, lo que les permite 

aprender a su propio ritmo y profundizar en los temas según sus necesidades e intereses. 

Además, estas plataformas suelen incluir herramientas de evaluación automatizadas, 

que proporcionan retroalimentación inmediata, ayudando a los estudiantes a identificar 

sus fortalezas y áreas de mejora de manera oportuna. 

Una estrategia didáctica que resulta atractiva a los nativos digitales y que toma 

provecho de las plataformas digitales es la gamificación, entendida esta como el uso de 

elementos y principios de diseño de juegos en contextos educativos con el propósito de 

mejorar la motivación, el compromiso y el aprendizaje de los estudiantes. Esta 

metodología se basa en la incorporación de dinámicas de juego, tales como la obtención 

de puntos, niveles, recompensas, desafíos y competencias, en el entorno educativo. Al 

hacer esto, se busca crear experiencias de aprendizaje más atractivas y dinámicas, que 

fomenten la participación activa y la persistencia de los alumnos en la realización de 

tareas académicas. El presente estudio tiene como objetivo investigar el tipo de jugador 

prevalente entre los estudiantes de ingeniería para mejorar las estrategias gamificadas 

en la educación STEM. 

La relación de la gamificación con las herramientas digitales es intrínseca y 

fundamental para su implementación efectiva, y ha sido implementada con éxito en la 

enseñanza de la ingeniería [6]. Las plataformas digitales permiten la creación de 

entornos interactivos y personalizados donde los elementos de gamificación pueden ser 

fácilmente integrados y gestionados. Por ejemplo, aplicaciones educativas y sistemas 

de gestión del aprendizaje pueden incluir características como insignias, tablas de 

clasificación y misiones, que incentivan a los estudiantes a participar y alcanzar metas 

de manera lúdica. Además, las herramientas de las TIC facilitan el seguimiento y 

análisis del progreso de los estudiantes, proporcionando datos valiosos que pueden ser 
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utilizados para ajustar y mejorar continuamente las estrategias de enseñanza, y les 

resultan familiares a los nativos digitales. 

La gamificación se caracteriza por ser una técnica que emplea mecánicas de juego 

en entornos no lúdicos con el propósito de mejorar el compromiso de los usuarios con 

un servicio. Dichas mecánicas de juego son constructos formados por reglas y lazos de 

retroalimentación, y su aplicación exitosa dependerá de una estrategia didáctica de 

gamificación bien diseñada, construida con base en un adecuado entendimiento del 

participante, su misión y la motivación que lo impulsa.  La intención de los autores del 

presente estudio es instrumentar actividades de aprendizajes gamificadas para la 

enseñanza de competencias de programación en carreras de ingeniería, tales como 

exploración de código en mazmorras, juegos de rol en un entorno de desarrollo de 

software, o sistemas de insignias y logros. Dichas estrategias han demostrado su 

viabilidad en la enseñanza de la ingeniería de software [7]. 

La Tabla 1 recopila las mecánicas de juego más comunes a la gamificación [8], las 

cuales pueden ser usadas de forma individual o combinada. 

Tabla 1. Mecánicas de la gamificación. 

Mecánica de juego Descripción 

Puntos 
Recompensas virtuales por el esfuerzo del jugador. Son la 

unidad granular de medida en la gamificación 

Logros Completar metas específicas planteadas por el juego 

Tableros de liderazgo 
Despliegue visual de comparación social, basado en puntos 

y logros 

Insignias Visualización de los logros del jugador 

Grafo social 
Representación de la red social del jugador. Las relaciones 

entre participantes son un importante factor motivacional 

Enfrentamientos con jefes Retos especiales al final de cada nivel 

Colecciones Conjunto de objetos virtuales acumulados 

Retos Objetivos planteados para lograr la motivación del jugador 

Desbloqueo de contenidos Privilegio para los jugadores al conseguir logros 

Restricciones 
Limitantes al uso de tiempo y de recursos que promueven la 

automotivación del jugador 

Niveles 
Progreso del jugador, presentado como una jornada 

personalizada 

Avatares Visualización del personaje del jugador 

Misiones Retos predefinidos con un objetivo específico 

Narrativa 

Planteamiento de retos y objetivos en forma de una historia 

dentro de un contexto que involucra emocionalmente al 

jugador 

Equipo 
Grupo de jugadores con una meta común para promover el 

aprendizaje colaborativo 

Bienes virtuales 
Recursos utilizables en el juego, resultado de conseguir 

puntos y logros 
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3. Método 

Dada la necesidad de entender las motivaciones de los estudiantes que participarán 

en el entorno gamificado de aprendizaje, el primer paso es determinar la categoría de 

jugadores a la que estos pertenecen, estableciendo las siguientes preguntas 

de investigación: 

PI1: ¿Cuál es el tipo de jugador más prevalente entre los estudiantes de Ingeniería 

en Sistemas Computacionales? 

PI2: ¿Cuál es el perfil motivacional del tipo de jugador más prevalente encontrado? 

Hasta ahora se han propuesto varias teorías que intentan describir diversos perfiles 

motivacionales de los jugadores. Una teoría prevalente propuesta por Bartle [9] la cual 

identifica "Tipos" de jugadores en función de su actividad preferida mientras juegan. 

Para identificar estos tipos, dicho autor desarrolló una prueba pionera en los estudios 

de juegos y mundos virtuales.  

El test de Bartle es un instrumento de evaluación diseñado para clasificar a los 

jugadores de videojuegos en cuatro tipos principales, basándose en sus preferencias y 

comportamientos dentro del juego. Los cuatro tipos de jugadores identificados por 

Bartle son:  

— Asesinos, quienes disfrutan de la competencia y el conflicto directo con 

otros jugadores. 

— Exploradores, cuyo propósito es descubrir y conocer más sobre el entorno 

del juego. 

— Socializadores, los cuales buscan la interacción y comunicación con 

otros jugadores. 

— Ambiciosos, centrados en acumular puntos, subir de nivel y lograr objetivos 

específicos dentro del juego. 

La relación del test de Bartle con la gamificación radica en su capacidad para 

proporcionar información valiosa sobre las motivaciones y preferencias de los usuarios, 

información que puede ser utilizada para diseñar sistemas de gamificación más 

efectivos [10]. Conociendo a qué tipo de jugador pertenece un usuario, los diseñadores 

pueden adaptar las mecánicas y dinámicas del sistema gamificado para satisfacer mejor 

sus motivaciones, ya sea a través de desafíos competitivos, oportunidades de 

exploración, interacciones sociales o recompensas y logros. 

El método aplicado en esta investigación consistió en aplicar el test de Bartle, que 

consiste en 35 reactivos binarios, a un conjunto de 71 estudiantes que conforman una 

muestra representativa de alumnos de la carrera de Ingeniería en Sistemas 

Computacionales, con el fin de conocer el tipo de jugador más prevalente entre ellos, y 

en base a este conocimiento seleccionar las mecánicas de juego más apropiadas para 

implementar una estrategia de gamificación que mejore la motivación para lograr un 

aprendizaje significativo entre los estudiantes, de acuerdo con la Tabla 1. 
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4. Resultados 

Los resultados obtenidos tras la aplicación de la prueba para determinar el tipo de 

jugador manifiestan que el promedio de las cuatro categorías presenta una distribución 

uniforme, arrojando los siguientes datos: 

— Tipo asesino: 66%, 

— Tipo explorador: 68%, 

— Tipo socializador: 67%, 

— Tipo ambicioso: 68%. 

Estos resultados, sin embargo, son engañosos. Aunque la media es bastante similar 

entre las categorías, al visualizar los datos de los reactivos individuales (ver Fig.1), 

queda de manifiesto que existen picos claramente distinguibles en varias de las 

preguntas planteadas. 

Al seleccionar los reactivos que obtuvieron un porcentaje de respuesta afirmativa 

superior al 90%, surge una tendencia marcada hacia tres características comunes entre 

ellos, en donde los estudiantes manifiestan que: 

— Se sienten atraídos por actividades que representen un reto a sus habilidades. 

— Buscan la obtención de recompensas que representen un reconocimiento a 

sus logros. 

— Son motivados por la competencia que representan los demás jugadores. 

 

Fig. 1. Porcentaje de respuestas afirmativas a cada uno de los nueve reactivos planteados para 

cada tipo de jugador. 
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5. Conclusiones 

Los resultados obtenidos pueden servir como guía para determinar el perfil 

motivacional de los estudiantes, lo que determinará las mecánicas de juego que llevarán 

a la mayor motivación para lograr los objetivos de aprendizaje establecidos en las 

actividades gamificadas propuestas. Seleccionar las mecánicas específicas dependerá, 

entre otros factores, de la plataforma de gestión del aprendizaje utilizada, de los 

criterios de evaluación para las asignaturas, así como del tema en particular que se 

pretende aprender.  

Para ejemplificar, en el caso de un sistema gamificado de aprendizaje de 

competencias de programación para ingeniería, sabiendo que los estudiantes buscan 

retos a sus habilidades, disfrutan la competencia con sus compañeros y gustan de 

acumular recompensas,  y asumiendo el uso de una plataforma de gestión de 

aprendizaje popular como Moodle, una buena selección de mecánicas aplicables podría 

ser la asignación de insignias por logros, desbloqueo de contenido por niveles y la 

publicación de un tablero de liderazgo grupal, todo lo cual puede instrumentarse con 

facilidad y puede, potencialmente, promover un aprendizaje significativo de las STEM 

al mejorar la motivación de los participantes [11]. 
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Abstract. The Depot-Free Multiple Traveling Salesperson Problem
(DFmTSP) is a variant of the classic Multiple Traveling Salesperson
Problem (mTSP). In general, the purpose of the DFmTSP is that
m salespersons must visit all the vertices of a given input complete
weighted graph G = (V,E,w) by minimizing an objective function. It
has many applications in network optimization, routing, and logistics. Its
main difference from other similar routing problems is that depots are
not considered. In this paper, we introduce a Two-Phase constructive
heuristic that uses an algorithm for the capacitated vertex k-center
problem (CVKCP) in the first phase. For the second phase, a
state-of-the-art heuristic for the classic TSP is used. The performed
empirical evaluation shows that the proposal is capable of finding feasible
and good-quality solutions in comparison to elaborated metaheuristics of
the literature. Even more important, the proposal outperforms a novel
metaheuristic when a percentage of imbalance between the number of
vertices in the salespersons’ paths is considered. Besides, one of the
main advantages of the proposal is that it can find solutions in practical
running times, which may be an important feature in certain situations.

Keywords: Network optimization, routing, heuristics, k-center, mTSP.

1 Introduction

Multiple Traveling Salesperson Problems (mTSPs) are a family of NP-hard
combinatorial optimization routing problems that generalize the classical
Traveling Salesperson Problem (TSP). The mTSPs receive a complete weighted
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graph G = (V,E,w) and a positive integer m as input. The purpose is to
look for m paths for the salespersons that visit all the vertices in V (G) by
minimizing an objective function associated with the costs of the edges E(G)
[8]. In general, mTSPs can be applied in many routing and scheduling contexts,
such as submarine patrol routing, bus routing, supervisor allocation, and some
variants of job scheduling problems. Among the most popular studied variants
of mTSP, two categories stand out:

– mTSPs that consider depots as part of the problem [12]:
• SmTSP: All the salespersons must start their paths from a single defined

vertex known as “depot”.
• MmTSP: There are multiple defined depots.

– mTSPs that do not consider depots at all [8]. These are known in the
literature as Depot-Free mTSPs (DFmTSP).

Besides, mTSPs can also be classified according to the nature of the paths
of the salespersons:

– Closed paths mTSPs (CP-mTSPs).
– Open paths mTSPs (OP-mTSPs).

In this context, a path is said to be closed if each salesperson starts and
finishes its path at the same vertex. Otherwise, the path is said to be open.
Among these mTSPs variants, DFmTSPs have received less attention in the
literature in comparison with others, although they are considered one of the
most fundamental variants [8]. This work focuses on the CP-DFmTSP. Besides,
additional constraints to the maximum number of vertices each salesperson
can visit are also considered. These are known in the literature as bounding
constraints [12].

The rest of the paper is organized as follows: Section 2 reviews the related
work of mTSPs and emphasizes the work focused on the DFmTSPs. Section
3 describes the proposal, a Two-Phase heuristic that uses the Cluster-First
Route-Second strategy. Section 4 presents the carried out computational
experimentation and performs an analysis of the results. Also, it discusses the
advantages and disadvantages of the proposal. Finally, Section 5 states the
conclusions and future work.

2 Literature Review

In general, mTSPs have been tackled through various optimization techniques,
such as integer programming, approximation algorithms, exact algorithms, and
heuristics and metaheuristics proposals. The initial integer programs (IPs) were
proposed between 1960 and 1976 [16, 22, 9]. Over time, these IPs have been
extended and improved to include considerations to address more realistic
scenarios. [12] presented bounding constraints for these IPs for the SmTSP and
MmTSP cases. In the context of the mTSP, bounding constraints specify that
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each salesperson must visit a minimum and/or maximum number of vertices.
In the literature, most of the IPs have been proposed for mTSPs that consider
depots as part of the problem. Nevertheless, recent advances in the literature
have presented integer programs that are capable of dealing with both: mTSPs
that consider depots and mTSPs that do not, and a combination between them
[8]. Other recent proposals include the study of polyhedral approaches and
branch-and-cut algorithms [2].

Besides IPs, other alternatives have been explored to approach mTSPs. As
previously mentioned, mTSPs are NP-hard. For this reason, in the last years,
many researchers have proposed heuristic and metaheuristic algorithms in order
to try to solve relatively big instances in practical running times. Among all the
heuristics and metaheuristics proposed for mTSPs, evolutionary computing and
some of their variants stand out [3, 26, 13].

Some recent proposals for the mTSP consist of hybridizing genetic algorithms
with other metaheuristic algorithms. Such is the case of [11], where a genetic
algorithm and an ant algorithm are combined, and [24], where a genetic
algorithm is integrated with an invasive weed algorithm (IWO). Further, variants
of ant algorithms have been used for similar routing problems like the mTSP
with capacity and time windows [23] and the multi-objective Green Vehicle
Routing Problem [15]. Other approaches that have been explored for mTSPs,
are Two-Phase heuristics, which, as the name suggests, are procedures composed
of two algorithm stages [1]. Among these, two main strategies stand out.

– Cluster-First Route-Second. The first phase consists of clustering the
vertices; then, the second phase determines a feasible route for each cluster.

– Route-First Cluster-Second. The first phase consists of generating a large
route that visits all the vertices; then, the second phase partitions such route
into smaller routes.

These Two-Phase approaches have been widely used in some works for
mTSPs. For SmTSP, in [3], a Route-First Cluster-Second strategy is used, and
then a GA with intra-route heuristics is used to improve the quality of the routes.
Other proposals have used the Cluster-First Route-Second, such as [25], where
a variation of the k-means algorithm is used at the clustering phase, then a
GA is used to build a route within each cluster. In fact, most works have used
variations of the k-means algorithm for the clustering phase for mTSPs [14, 20,
19]. An interesting point of [19] is that the authors used a parallel approach to
improve the running times. Regarding MmTSP the situation is similar, variations
of the k-means clustering have been used in [21, 17]. It is worth noting that,
for the second phase, most authors have used GAs, ant-based algorithms, and
hybridizations between them.

It is important to remark that, although there are many proposals for the
mTSPs, just a few focuses on the specific variant of this paper (DFmTSP).
In fact, in the literature on mTSPs, many works study the SmTSP, but
they refer to it just as the mTSP. On the contrary, there are also a few
papers where the DFmTSP is studied but referred to as the MmTSP. This is
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deeply clarified in [8]. This paper studies the DFmTSP by considering two key
points: depots do not exist in the problem statement, and there are bounding
constraints. As far as we know, a few papers approach this specific variant.
Among the last heuristic/metaheuristic proposals that consider these specific
constraints, Zhou et al. [26] proposes a Partheno Genetic Algorithm (PGA) that
considers lower-bound constraints. Also, [11] proposes a metaheuristic combining
an Ant Colony and a PGA. This algorithm is called AC-PGA and considers
both lower-bound and upper-bound constraints. According to the presented
experimentation in [11], AC-PGA outperforms other proposals in terms of
finding better quality solutions.

Regarding the objective functions for the mTSPs, two popular objective
functions were initially considered in [4]. The first one is called minsum mTSP,
where the objective is to minimize the sum of the cost of the salespersons’ paths.
The second objective function is known as the minmax mTSP, which consists of
minimizing the longest path among the salespersons. However, the first one has
become the most popular in the literature.

3 A Two-Phase Constructive Heuristic

This section introduces a Two-Phase constructive heuristic for the DFmTSP
with upper-bound constraint. The proposal is based on the capacitated vertex
k-center problem (CVKCP).

Along with k-means, k-center problems are natural clustering methods.
In particular, the capacitated version imposes load-balance by considering an
upper bound on the number of clients each center can attend. The vertex
k-center problem (VKCP) has been used in the literature to design efficient
constructive heuristics for the DFmTSP [18]. Nevertheless, it can not be used
for the DFmTSP with bounding constraints since the VKCP does not restrict
the maximum number of vertices that can be assigned to each center. As far as
we know, the capacitated version has not been used as a clustering strategy for
mTSPs in the literature. Thus, this work explores the advantages of using the
capacitated vertex k-center problem as a clustering technique for the DFmTSP
with bounding constraints. One of the main advantages, is that the CVKCP can
create clusters with a maximum number of assigned vertices to each center, this
characteristic is useful for the DFmTSP to limit the number of assigned vertices
in each path, which is equivalent to the upper-bound constraint for mTSPs.
Algorithm 1 shows the pseudocode of the Two-Phase proposed heuristic. The
notation for this algorithm is the following:

– m is the number of salespersons.
– p = {p1, p2, · · · , pm} is a solution for the DFmTSP composed by m

salespersons paths.
– pi is a salesperson path (a sequence of vertices) of a solution p.
– k is the number of centers for the CVKCP.
– C is the set of centers C ⊆ V (G).
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– PC is the assignment function PC : V (G) \ C → C.
– U is the maximum number of vertices each salesperson can visit

(upper-bound constraint).
– Pcj is the subset of the assignment that contains only tuples of the form

(u, cj).
– dom

(
Pcj

)
is the set of vertices assigned to be covered by center cj .

Algorithm 1: Two-Phase Constructive Heuristic.
Input: A weighted graph G = (V,E,w), and two positive integers m

and U
Output: A set of salespersons tours p = {p1, p2, · · · , pm}

1 p← ∅
2 k ← m
3 (C,PC)← kCenterClustering(G, k, U)
4 foreach ci ∈ C do
5 X ← dom (Pci) ∪ {ci}
6 pi ← TSPRouting(G[X])
7 p← p ∪ {pi}
8 end
9 return p

3.1 Clustering Phase

As mentioned before, the k-center algorithms have been used for clustering
purposes. Thus, in this section we propose the usage of a heuristic that has proven
to be effective in approaching the CVKCP. The used algorithm is known in the
literature as the One-Hop Farthest-First heuristic (OHFF) [7]. This heuristic
is based on an exact algorithm for the CVCKP [6], and exploits a relationship
between the CVKCP and other combinatorial optimization problem known as
the Minimum Capacitated Dominating Set (MCDS). Besides, in [6] is stated
the CVKCP can be solved through a series of MCDS problems. The formal
relationship is described in the Theorem 1 whose detailed proof can be consulted
at [6]. It is known that the CVKCP and the MCDS are both NP-hard. Thus, in
a general overview, the OHFF tries to solve the CVKCP by greedily trying to
solve MCDS subproblems through a binary search. One of the main features of
the OHFF is that parallel computing can be used to improve the running times.
Algorithm 2 shows the pseudocode of the OHFF.

Theorem 1. The minimum capacitated dominating set (MCDS) over the
bottleneck graph GOPT = (V,EOPT ) is the optimal solution to the CVKCP over
the original input graph G = (V,E,w), where OPT is the value of the optimal
solution to the latter problem.
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Algorithm 2: One-Hop Farthest-First (OHFF) for the CVKCP [7].
Input: A complete weighted graph G = (V,E,w), two positive integers

k and U , and a non-decreasing list of the m edge weights of G,
i.e., w(e1), w(e2), ..., w(em), where w(ei) ≤ w(ei+1)

Output: A set of vertices C ⊆ V , such that |C| = k,
and an assignment PC : V \ C → C

1 high← m
2 low ← 1
3 (C,PC)← (∅, ∅)
4 while low ≤ high do
5 mid← ⌊(high+ low)/2⌋
6 (C ′, PC′)← GreedyMCDS (G, k,w(emid), U)
7 if r(C ′, PC′) ≤ r(C,PC) then
8 (C,PC)← (C ′, PC′)
9 end

10 if r(C,PC) ≤ w(emid) then
11 high← mid− 1
12 else
13 low ← mid+ 1
14 end
15 end
16 while |C| < k do
17 v ← argmax {d (u, PC (u)) : u ∈ V \ C}
18 PC ← PC \ {(v, PC (v))}
19 C ← C ∪ {v}
20 end
21 foreach ci ∈ C do
22 X ← dom (Pci) ∪ {ci}
23 cj ← argmin {max{d(u, v) : v ∈ X} : u ∈ X}
24 PC ← PC \ Pci

25 Pcj ← {(v, cj) : X \ {cj}}
26 PC ← PC ∪ Pcj

27 end
28 return (C,PC)

3.2 Routing Phase

In the routing literature, many algorithms have been proposed for the classical
Traveling Salesperson Problem (TSP) [5]. Among these proposals, there are
some exact algorithms that guarantee to find the optimal solution. However,
since TSP is NP-hard, such algorithms may have an important limitation.
Other proposals are approximation algorithms that do not guarantee finding
an optimal solution but a solution inside a ratio of the optimal one. Likewise,
heuristics do not guarantee optimality but are fast and very effective in finding
near-optimal solutions. Metaheuristics are more elaborated procedures that use
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exploration and exploitation components to escape from local optimals during
search. Lin–Kernighan heuristic (LKH) is one of the best heuristics for the TSP
[10]. It is a local search algorithm that improves an input tour (Hamilton cycle)
by exploring its neighborhood. Every time a shorter tour is found, the process
is repeated until no better tour can be found. For this specific heuristic, a
neighborhood is defined by considering the number of edges that are in one
tour but not the other. For the routing phase of our proposal, we use the
Lin-Kernighan algorithm since it has proven to be effective for TSP instances
with thousand of vertices. Besides, an efficient implementation is provided in
http://webhotel4.ruc.dk/~keld/research/LKH/.

4 Computational Experimentation and Analysis

We performed an empirical evaluation of the proposal over some instances of
the TSPLIB dataset. For comparison purposes, we implemented the AC-PGA
metaheuristic [11], which is one of the best metaheuristics for this specific variant
of the problem. For the experimentation, we used the m values in the set {5, 10},
and for the upper bound U we used the values in {⌈n/m⌉, ⌈n/m × 1.1⌉}. We
refer to the value ⌈n/m⌉ as a 0% of imbalance whereas ⌈n/m × 1.1⌉ as a
10% of imbalance. The algorithms were implemented in the C++ programming
language. All the experiments were carried out on a platform with Intel Core
i9-13900, 64 GB RAM, under an OS Ubuntu 22.04.4 LTS 64-bit with a
GCC 11.4.0 compiler. The version of the LKH is 2.0.10. All datasets and the
implementation of the Two-Phase constructive heuristic can be consulted in
https://gitlab.com/alex.ca/DFmTSP-TP. The parameter setting of the LKH
used in our proposal, and the configuration of the AC-PGA are shown in Tables
1 and 2.

Tables 3 and 4 show the obtained results for 0% and 10% of imbalance of
the three tested algorithms, where OHFF+ is the OHFF heuristic but executed
|V (G)| times with a different initial chosen vertex. The objective function is
minsum. For the AC-PGA column, fbest is the objective value of the best-found
solution of 30 independent runnings, whereas fµ is the average, σ is the standard
deviation, and t(s) is the average running time in seconds. For the OHFF/LKH
column, fbest is the objective value of the best-found solution of performing 30
independent runnings of the OHFF for the CVKCP and then running the LKH
in the routing phase, fµ is the average of the 30 runnings, σ is the standard
deviation, and t(s) is the average of the sum of both running times, the clustering
phase and the routing phase. Due to the nature of the OHFF algorithm, some
solutions for the CVKCP may include clusters with only one vertex.

In these cases, a salesperson path can not be constructed. Then, such
solutions were ignored. For the OHFF+/LKH, the columns are the same as the
previous but with the difference that OHFF+ was used. Note that the standard
deviation of the latter is always 0 because the OHFF+ algorithm is deterministic.
From these tables, we observe that when the percentage of imbalance is 0%
(Table 3), the AC-PGA was capable of finding some of the best solutions.
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Table 1. Parameter setting of the LKH [10].

Parameter Value
RUNS 1

TIME_LIMIT 0.1s
MOVE_TYPE 5
PATCHING_C 3
PATCHING_A 2

Table 2. Parameter setting of the AC-PGA metaheuristic [11].

Parameter Value
Population size 100

AC-PGA iterations 100
ACO iterations 100

ρ 0.1
α 2
β 8
γ 0.5

Nevertheless, an important remark is that the running times of AC-PGA are
much higher than the proposals that use the OHFF as the clustering phase.
For the case where 10% of imbalance is allowed (Table 4), most of the best
solutions were found by the proposals that use the OHFF and the LKH. Thus,
we conclude that, at least for the tested instances, the proposed Two-Phase
heuristic is capable of finding better solutions when imbalance is allowed among
the paths. Furthermore, the running times of the Two-Phase heuristic are many
orders of magnitude lower than those of the AC-PGA metaheuristic.

Fig. 1 shows the printed solutions by the tested algorithms over the instance
kroA200 with a 10% of imbalance. From this figure, we can observe that the
best-found solutions by the AC-PGA contain some overlaps between the paths
of the salespersons. On the contrary, solutions computed by the Two-Phase
heuristic proposals have fewer overlaps, and the paths are better refined due
to the LKH.

Fig. 2 and Fig. 3 show the convergence of the AC-PGA metaheuristic over the
instance kroA200 with 0% and 10% of imbalance respectively. In these figures,
the dotted lines represent the objective values of the solutions computed by
the Two-Phase heuristic proposals. It is important to note that the Two-Phase
heuristic proposals do not have generations since they are constructive heuristics.
Nevertheless, they are shown in the figures for contrast purposes. In these figures,
it can be observed that the proposals can find good quality solutions compared
to the AC-PGA. However, due to the nature of AC-PGA metaheuristic, its
exploration and exploitation components could cause the algorithm to escape
from local optima, which could give the possibility that during the generations,
the solution found may eventually be better than those found by the Two-Phase
heuristic proposals, such is the case of the Fig. 2(b).
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Table 3. Results over some instances of the TSPLIB dataset with 0% of
imbalance. The best-found solutions are bold.

Instance n m U
AC-PGA OHFF/LKH OHFF+/LKH

fbest fµ σ t(s) fbest fµ σ t(s) fbest fµ σ t(s)

kroA100 100 5 20 25016 25823 485.28 87 23554 27864 1640.57 0.0023 23554 23554 0 0.035
10 10 26593 27371 487.34 86 29984 36203 2975.18 0.0033 30895 30895 0 0.058

kroB100 100 5 20 24742 26100 619.73 87 28223 30112 748.05 0.0022 24821 24821 0 0.036
10 10 27332 28421 622.52 87 33756 40930 3799.44 0.0031 29802 29802 0 0.057

kroA150 150 5 30 30872 32510 618.19 199 30513 35621 2386.67 0.0027 31577 31577 0 0.098
10 15 33056 34869 620.26 195 36779 44823 2763.87 0.0029 40862 40862 0 0.139

kroB150 150 5 30 30730 32320 565.49 199 29894 33882 3070.23 0.0023 29224 29224 0 0.095
10 15 33826 35106 643.54 194 34829 46986 5240.63 0.0027 35186 35186 0 0.129

kroA200 200 5 40 35503 36994 722.84 355 34618 37381 1257.45 0.0020 32284 32284 0 0.206
10 20 38968 40348 605.29 347 40126 46134 3567.72 0.0027 35367 35367 0 0.318

kroB200 200 5 40 34831 36393 577.19 355 33191 36795 1159.41 0.0022 34059 34059 0 0.218
10 20 36222 38667 961.79 347 35539 47045 4400.87 0.0027 36715 36715 0 0.272

pr226 226 5 46 105262 107910 1586.42 452 102824 118669 9376.52 0.0016 107812 107812 0 0.167
10 23 110059 114034 1961.42 442 126819 152624 17007.07 0.0026 125730 125730 0 0.233

pr264 264 5 53 58210 59999 895.17 617 60286 60864 443.44 0.0019 60552 60552 0 0.297
10 27 53252 54709 831.13 608 50868 58201 7412.33 0.0024 51762 51762 0 0.301

pr299 299 5 60 58254 59787 687.26 791 55176 56996 2044.10 0.0022 54629 54629 0 0.351
10 30 62728 64485 855.80 782 65223 72845 5111.33 0.0030 67588 67588 0 0.548

pr439 439 5 88 132677 136023 1630.25 1706 117113 121844 3746.26 0.0044 118061 118061 0 1.124
10 44 140475 143925 1412.78 1682 140638 167431 13625.24 0.0076 145451 145451 0 1.803

Table 4. Results over some instances of the TSPLIB dataset with 10% of
imbalance. The best-found solutions are bold.

Instance n m U
AC-PGA OHFF/LKH OHFF+/LKH

fbest fµ σ t(s) fbest fµ σ t(s) fbest fµ σ t(s)

kroA100 100 5 22 25116 25896 425.99 87 24418 28151 1706.43 0.0021 24499 24499 0 0.031
10 11 26582 27463 413.00 87 25605 31282 3347.16 0.0032 26745 26745 0 0.051

kroB100 100 5 22 25651 26300 384.15 87 25651 29820 1790.54 0.0021 25647 25647 0 0.035
10 11 26262 27985 901.65 87 27186 29427 1405.30 0.0029 27560 27560 0 0.052

kroA150 150 5 33 31301 32756 551.65 199 31393 34347 2015.50 0.0023 29732 29732 0 0.092
10 17 33740 35252 667.75 196 32192 36397 3994.71 0.0026 31820 31820 0 0.110

kroB150 150 5 33 31251 32432 548.34 199 28861 32195 2963.20 0.0024 29601 29601 0 0.082
10 17 32713 34371 646.82 196 30496 33561 1539.51 0.0031 31463 31463 0 0.111

kroA200 200 5 44 36059 37283 491.31 355 35121 38331 2317.41 0.0020 32343 32343 0 0.201
10 22 38393 40014 609.98 348 36279 38180 2100.52 0.0027 34599 34599 0 0.246

kroB200 200 5 44 35456 36605 553.96 355 33495 37481 2284.02 0.0022 34716 34716 0 0.205
10 22 37361 39150 655.16 349 35087 41324 4751.43 0.0028 35946 35946 0 0.244

pr226 226 5 50 98788 104878 2516.27 449 100707 111289 6742.86 0.0015 107997 107997 0 0.144
10 25 96528 107709 3589.47 441 105342 129225 10807.50 0.0017 127776 127776 0 0.213

pr264 264 5 59 59181 61050 622.76 617 60789 60798 45.77 0.0020 60789 60789 0 0.263
10 30 52405 54504 948.33 608 50480 55964 5127.32 0.0021 50144 50144 0 0.314

pr299 299 5 66 59125 60544 622.18 792 52861 58107 2706.32 0.0018 53936 53936 0 0.324
10 33 62671 65695 1022.61 792 56627 62990 5636.68 0.0025 58514 58514 0 0.454

pr439 439 5 97 131110 135665 1700.13 1817 115286 119869 2922.18 0.0050 125807 125807 0 1.081
10 49 139017 144026 1815.28 1682 127688 139649 6790.23 0.0042 137703 137703 0 1.413
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minsum= 36059

(a) AC-PGA, m = 5

minsum= 38393

(b) AC-PGA, m = 10

minsum= 35121

(c) OHFF/LKH, m = 5

minsum= 36279

(d) OHFF/LKH, m = 10

minsum= 32343

(e) OHFF+/LKH, m = 5

minsum= 34599

(f) OHFF+/LKH, m = 10

Fig. 1. Printed solutions of the kroA200 instance with 10% of imbalance.
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Fig. 2. Convergence plot of AC-PGA over instance kroA200 with
0% of imbalance. OHFF/LKH and OHFF+/LKH are included for
comparative purposes.
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Fig. 3. Convergence plot of AC-PGA over instance kroA200 with
10% of imbalance. OHFF/LKH and OHFF+/LKH are included for
comparative purposes.
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5 Conclusions and Future Work

In this paper, a Two-Phase constructive heuristic for the Depot-Free Multiple
Traveling Salesperson Problem (DFmTSP) was proposed. The main feature
of our proposal is that a state-of-the-art heuristic for the capacitated vertex
k-center problem (CVKCP) is used in the clustering phase, which is known as
the One-Hop Farthest-First (OHFF). For the routing phase, a state-of-the-art
heuristic called Lin-Kernighan (LKH) was used. The obtained results show that
the proposed Two-Phase heuristic was able to find feasible and good-quality
solutions in comparison with a state-of-the-art metaheuristic that employs
elaborated exploration and exploitation mechanisms. Besides, reported running
times support that the proposed Two-Phase heuristic is a good choice
when practical running times matter. Some future work directions may arise
from this research. For instance, working with dynamic clusters may be of
interest. This can be performed through an evolutionary or metaheuristic that
employs components to handle partitions of the set of vertices, then applying
intensification methods over the partitions such as the LKH to find better
quality solutions iteratively. This approach may lead to finding better solutions
in comparison to working with static clusters/partitions, just as we worked in
this research.
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