

Vol. 152 No. 5
May 2023

Research in Computing Science

Series Editorial Board

Editors-in-Chief:

Grigori Sidorov, CIC-IPN, Mexico

Gerhard X. Ritter, University of Florida, USA

Jean Serra, Ecole des Mines de Paris, France
Ulises Cortés, UPC, Barcelona, Spain

Associate Editors:
Jesús Angulo, Ecole des Mines de Paris, France
Jihad El-Sana, Ben-Gurion Univ. of the Negev, Israel

Alexander Gelbukh, CIC-IPN, Mexico

Ioannis Kakadiaris, University of Houston, USA
Petros Maragos, Nat. Tech. Univ. of Athens, Greece

Julian Padget, University of Bath, UK

Mateo Valero, UPC, Barcelona, Spain
Olga Kolesnikova, ESCOM-IPN, Mexico

Rafael Guzmán, Univ. of Guanajuato, Mexico

Juan Manuel Torres Moreno, U. of Avignon, France
Miguel González-Mendoza, ITESM, Mexico

Editorial Coordination:
 Griselda Franco Sánchez

Research in Computing Science, Año 22, Volumen 152, No. 5, mayo de 2023, es una publicación mensual,

editada por el Instituto Politécnico Nacional, a través del Centro de Investigación en Computación. Av. Juan

de Dios Bátiz S/N, Esq. Av. Miguel Othon de Mendizábal, Col. Nueva Industrial Vallejo, C.P. 07738, Ciudad
de México, Tel. 57 29 60 00, ext. 56571. https://www.rcs.cic.ipn.mx. Editor responsable: Dr. Grigori Sidorov.

Reserva de Derechos al Uso Exclusivo del Título No. 04-2019-082310242100-203. ISSN: en trámite, ambos

otorgados por el Instituto Politécnico Nacional de Derecho de Autor. Responsable de la última actualización
de este número: el Centro de Investigación en Computación, Dr. Grigori Sidorov, Av. Juan de Dios Bátiz

S/N, Esq. Av. Miguel Othon de Mendizábal, Col. Nueva Industrial Vallejo, C.P. 07738. Fecha de última

modificación 01 de mayo de 2023.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de la publicación

sin previa autorización del Instituto Politécnico Nacional.

Research in Computing Science, year 22, Volume 152, No. 5, May 2023, is published monthly by the

Center for Computing Research of IPN.

The opinions expressed by the authors does not necessarily reflect the editor’s posture.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior

permission of Centre for Computing Research of the IPN.

Volume 152(5)

Computational Intelligence and

Applications

Rocio Erandi Barrientos-Martínez,

Marcela Quiroz-Castellanos,

Héctor Gabriel Acosta-Mesa,

Efrén Mezura-Montes (eds.)

Instituto Politécnico Nacional, Centro de Investigación en Computación

México 2023

ISSN: in process

Copyright © Instituto Politécnico Nacional 2024

Formerly ISSNs: 1870-4069, 1665-9899

Instituto Politécnico Nacional (IPN)

Centro de Investigación en Computación (CIC)

Av. Juan de Dios Bátiz s/n esq. M. Othón de Mendizábal

Unidad Profesional “Adolfo López Mateos”, Zacatenco

07738, México D.F., México

http://www.rcs.cic.ipn.mx

http://www.ipn.mx

http://www.cic.ipn.mx

The editors and the publisher of this journal have made their best effort in

preparing this special issue, but make no warranty of any kind, expressed or

implied, with regard to the information contained in this volume.

All rights reserved. No part of this publication may be reproduced, stored on a

retrieval system or transmitted, in any form or by any means, including

electronic, mechanical, photocopying, recording, or otherwise, without prior

permission of the Instituto Politécnico Nacional, except for personal or

classroom use provided that copies bear the full citation notice provided on the

first page of each paper.

Indexed in LATINDEX, DBLP and Periodica

Electronic edition

http://www.ipn.mx/
http://www.ipn.mx/
http://www.cic.ipn.mx/

Table of Contents
Page

HOK-Means: A Hybrid and Parallel Clustering Algorithm Oriented to Big

Data... 5

Joaquín Pérez Ortega1, Nancy Salgado Antunez,

Sandra Silvia Roblero Aguilar, Yasmín Hernández,

Nelva Nely Almanza Ortega, Vanesa Landero Nájera

Improving Text Representations: A Systematic Literature Review............................ 15

José Hernández Hernández, Guillermo de Jesús Hoyos Rivera,

Efrén Mezura Montes

Induction of Convolutional Decision Trees with Differential Evolution for

Image Segmentation ... 23

Jesús Arnulfo Barradas Palmeros, Efrén Mezura Montes,

Héctor Gabriel Acosta Mesa, Aldo Márquez Grajales,

Rafael Rivera López

Proposal of a CNN-Based Approach for Traffic Signal Detection 33

Madaín Pérez Patricio, Carlos Alexis Ramírez Mendoza,

Germán Rios Toledo, Juan Antonio de Jesús Osuna Coutiño

Selection of a Fixed-Length Set of Biologically-Constrained Association

Rules for Bacterial Vaginosis Diagnosis .. 43

María Concepción Salvador-González, Juana Canul-Reich,

Rafael Rivera-López, Efrén Mezura-Montes,

Erick de la Cruz-Hernandez

Vehicle Make and Model Recognition with Generation of New Classes

Using Clustering Techniques .. 51

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos,

Guillermo de Jesús Hoyos-Rivera, Efrén Mezura-Montes

Western Blot Pattern Classification Using Convolutional Neural Networks

for Breast Cancer Diagnosis ... 61

José Luis Llaguno-Roque, Rocio Erandi Barrientos-Martínez, Héctor

Gabriel Acosta-Mesa, Tania Romo-González

Spiking Neural Networks Codification Using Bio-Inspired Computation 69

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa,

Efrén Mezura-Montes

3

ISSN 1870-4069

Research in Computing Science 152(5), 2023ISSN 1870-4069

Sentiment Analysis Using Convolutional Neural Networks Generated by

Neuroevolution ... 77

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos,

Guillermo de Jesús Hoyos-Rivera, Efrén Mezura-Montes

4Research in Computing Science 152(5), 2023 ISSN 1870-4069

HOK-Means: A Hybrid and Parallel Clustering

Algorithm Oriented to Big Data

Joaquín Pérez Ortega, Nancy Salgado Antunez1,

Sandra Silvia Roblero Aguilar1, 2, Yasmín Hernández1,

Nelva Nely Almanza Ortega2, Vanesa Landero Nájera3

1 Tecnológico Nacional de México,

Centro Nacional de Investigación y Desarrollo Tecnológico,

Mexico

2 Tecnológico Nacional de México,

Instituto Tecnológico de Tlalnepantla,

Mexico

3 Universidad Politécnica de Apodaca,

Computer Systems,

Mexico

jpo_cenidet@yahoo.com.mx, {m20ce047,

yasmin.hp}@cenidet.tecnm.mx, {sandra.ra,

nelva.ao}@tlalnepantla.tecnm.mx,

vlandero@upapnl.edu.mx

Abstract. Using the K-Means algorithm to analyze large datasets demands much

time and computational resources. An approach to reducing the time is to

parallelize the algorithm. However, the processing time is still high to process

large datasets like those presented in Big Data. In this sense, a hybrid clustering

algorithm with parallel execution is proposed to solve large datasets. The

proposed algorithm is inspired by a highly efficient sequential variant of the K-

Means algorithm named O-K-Means. Experimental results with synthetic and

real large datasets with conventional equipment showed that Hybrid OK-Means

reduces the time to 7.54 times compared to the sequential variant. It is noteworthy

that as the size of the datasets grows, the speedup results tend to improve,

preserving the quality of the solution. Highlighted, the proposal presented in this

article shows a significant improvement in speedup, surpassing the works

reported by other researchers.

Keywords: Big data, clustering, k-means, parallel programming.

1 Introduction

Technological development has caused an exponential increase in data generation and

storage in recent years. Therefore, there is an interest in extracting knowledge from

these massive amounts of data since it would allow us to make better decisions [1, 2].

5

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 5–13; rec. 2022-08-03; acc. 2022-10-12

mailto:jpo_cenidet@yahoo.com.mx
mailto:yasmin.hp%7D@cenidet.tecnm.mx
mailto:nelva.ao%7d@tlalnepantla.tecnm.mx

One of the ways to gain insight from large amounts of data is by identifying

clustering patterns. To perform clustering of massive amounts of data (Big Data) with

standard tools is generally limited by computing resources [3]. In this regard, our

contribution is to provide a strategy to deal with the problem of clustering objects

according to their attributes in a Big Data environment.

Clustering techniques have been used in various areas, such as data science, data

engineering, and business [1]. Clustering consists of partitioning a set of n objects in k

non-empty subsets called clusters in such a way that the objects in one cluster have

attributes similar to each other and, at the same time, different from the objects in

other clusters [2].

In this article, a parallel algorithm, which we call Hybrid O-K-Means (HOK-Means),

is proposed, which is inspired by an improvement of the K-Means algorithm called O-

K-Means[2]. This variant has shown to be highly efficient in solving large datasets of

the Big Data type.

The structure of this paper is organized as follows. Section 2 presents related work.

Section 3 describes the algorithms used in this research and shows the improvement

proposal. Section 4 describes performance metrics and the design of the experiment.

Section 5 reports the results obtained. Conclusions and ideas for future research are

given in Section 6.

Algorithm 1: HOK-Means
1 Master Node

2 Initialization:
3 P := {p1, …, pt}; // The set of available processors is allocated

4 N := {x1, …, xn}; // Load Dataset

5 M := {μ1, …, μk}; // Initialize random centroids

6 U := 0.72; //Threshold value for determining O-K-Means convergence;

7 Send start order, centroids (M), and no to slaves;

8 Slave Node
9 Classification:
10 For xi ∈ Np and μk ∈ M{

11 Calculate the Euclidean distance from each xi to each k centroid;

12 Assign object xi to the nearest centroid μk;

13 Calculate the number of objects that changed groups;

14 Send MR results matrix;

15 Send the number of objects that changed the group
rv

16 Master Node

17 Receive end status and information from all slave nodes;

18 Calculate the percentage of change = 100(/); r rv n

19 Calculate centroids:
20 Calculate the centroid M;

21 Convergence:
22 If (γ ≤ U):

23 Stop the algorithm;

24 Otherwise:

25 Go to step 7;

26 End of algorithm

6

Joaquín Pérez Ortega, Nancy Salgado Antunez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

2 Related Work

According to [3, 4], the clustering problem type K-Means when k>=2 or d>=2 is NP-

Hard, so obtaining an optimal solution for a dataset of considerable size is intractable.

An approach to reducing the processing time of sequential algorithms is parallelizing

them. The standard K-Means algorithm has been parallelized using different platforms

and architectures.

For example, in Map Reduce [3, 4], Spark [5], Peer to Peer [6], GPU [7, 8], Multi-

core [9], and FGPA [10], among others. Improvements have been made to the K-Means

algorithm that increases its efficiency. However, there are few parallelized versions of

improvements to the K-Means algorithm. Three of the parallelized enhancements are

described below.

In [9], a parallel variant of K-Means++ is proposed, using multi-core on a single

computer. This work presents the division of the dataset in such a way that each

processor works a subset of objects in parallel. The best speedup achieved was 7.7, with

a computer of 12 cores and a parallel efficiency of 0.64.

In [11], the K-Means++ algorithm is implemented on three different architectures

for shared memory: multicore CPU, high-performance GPU, and the massively

multithreaded Cray XMT platform. The objective of this research was to show a

performance relationship of each platform with the number of objects, attributes,

and groups.

In [5], an improvement in the initialization phase of the K-Means algorithm named

Canopy is proposed. This improvement consists of selecting the set of centroids using

the weighted density method to reduce the impact of outliers on the clustering results.

The best result is a speedup of 4.0 and a parallel efficiency of 2.0.

The size of the largest dataset is 1.72 GB. The algorithm is parallelized using the

Spark platform with eight cores. Although there are already algorithms that parallelize

K-Means improvements, the efficiency they report is limited, and it is foreseeable that

the solution of large datasets is long time-consuming.

In this sense, the proposal presented in this article shows a significant improvement

in speedup, surpassing the works mentioned. Consequently, enabling the solution of

larger datasets in less time.

3 New HOK-Means Algorithm

This section briefly describes the background that gave rise to the algorithm and then

describes the proposed algorithm in detail. K-Means is an iterative method that consists

Table 1. Datasets used in experiments.

id 1 2 3 4 5 6 7 8 9 10 11 DSAS EPCS

n 2 2 2 2 2 1 1 1 0.5 1.2 1 1,140,000 2,049,280

d 2 4 6 5 7 4 7 10 11 5 11 45 7

7

HOK-Means: A Hybrid and Parallel Clustering Algorithm Oriented to Big Data

Research in Computing Science 152(5), 2023ISSN 1870-4069

of partitioning a set of N objects into k ≥ 2 non-empty groups so that the objects of each

group have similar attributes and, at the same time, are different from the objects of any

other group [2].

There are different improvements to the K-Means algorithm [12]. In [2], a heuristic

called O-K-Means is proposed, which accelerates the convergence process, stopping

the algorithm when the total number of objects that change the cluster in an iteration is

less than a threshold. This value expresses a relationship between the computational

effort and the quality of the solution.

Therefore, although the gain in solution quality is minimal, the algorithm invests the

same computational effort to perform each iteration. The proposed stopping threshold

decreases the number of iterations while preserving most of the quality of the solution

of the K-Means algorithm. In [2], the experimental results presented achieved an

average execution time reduction of 93.88%, with only a 0.4% loss in clustering quality

compared to standard K-Means.

HOK-Means is a parallel version of the O-K-Means sequential algorithm, and for

both algorithms, the same outputs will be obtained with the same inputs. HOK-Means

is an algorithm that parallelizes the classification and convergence phases of the

sequential O-K-Means algorithm.

To describe the HOK-Means algorithm, we will rely on Algorithm 1, which shows

the sequence of execution of instructions in the master node and the slave nodes.

Initialization: The initialization of the master node is shown in lines 2 to 7 in

Algorithm 1. In this phase, the variables are initialized. A remarkable parameter is the

value of the threshold; in this case, a value of 0.72 U is assigned. In Line 7, the master

node sends the start order, data of the centroids, and the subset of objects that each slave

node will work on.

Classification: Lines 8 to 15 show the instructions carried out in parallel by the slave

nodes. Lines 10 and 11 have the instructions for calculating the distance of each object

to each of the centroids. Line 12 shows the instruction to assign an object to the group

whose centroid is closest to the object. The next line determines the number of objects

that changed groups. This information is relevant to determining when the algorithm

should stop.

Fig. 1. Solution time with synthetic datasets.

8

Joaquín Pérez Ortega, Nancy Salgado Antunez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

In line 14, the slave nodes transmit to the master node a matrix, whose number of

rows corresponds to the number of centroids. In the first column, there is the value of

the centroid identifier; in the second, the sum of the distance of all the objects that

belong to this group; and the third corresponds to the number of objects in the group.

Line 15 transmits the number of objects that changed the group.

Calculation de γ: Line 17 of the master node concentrates the data that all the slave

nodes have transmitted to it and calculates the percentage of change of objects γ. Note

that the value of γ is used in the stopping criterion of the algorithm.

Calculation of the Centroid: In line 20, the calculation of the new centroids

is performed.

Convergence: In line 22, it is determined if the object change percentage is less than

or equal to the predetermined threshold. If it is affirmative, the algorithm stops.

Otherwise, the algorithm continues at step 7.

The HOK-Means programming was coded in Python 3.8 language on a Windows 10

operating system. Some libraries used were: Pandas, Numpy, and parallel Python (PP).

The equipment used was a Dell laptop processor Intel® Core™ i7-6700HQ CPU

2.60GHz, 8 processors, 16GB of memory, and 1TB fixed hard drive.

4 Experimental Evaluation

In this section, the metrics to evaluate the parallelization of the algorithm are first

described, then the experiments carried out are shown and, finally, the solved data sets

are shown.

The speedup (Sp) and parallel efficiency (Ep) are two metrics used to evaluate the

quality of a parallel algorithm. The rate of acceleration or speedup, indicates the

relationship between the sequential execution time (Ts) and the parallel execution time

(Tp) Eq. (1).

The ideal speedup is a linear value Sp = p, where p is the number of processors [13].

The parallel efficiency indicates the relationship between the speedup and the number

of processors used (p) Eq. (2). The ideal parallel efficiency value is 1 [13]:

speedup: 𝑆𝑝 =
𝑇𝑠

𝑇𝑝
, (1)

parallel efficiency: 𝐸𝑝 =
𝑆𝑝

𝑝
. (2)

Fig. 2. Speedup obtained when solving synthetic datasets.

9

HOK-Means: A Hybrid and Parallel Clustering Algorithm Oriented to Big Data

Research in Computing Science 152(5), 2023ISSN 1870-4069

The measure of the quality of the clustering is the objective function value, the sum

of the squared error (SSE), according to the K-Means algorithm[14]. Eq. (3) shows SSE.

The clustering quality is better when the value of SSE is lower.

The percentage of quality loss (δ (%)) is the ratio of two quality measures

δ(%)=100(1-z/zo), where z is the SSE obtained by solving with standard K-Means and

zo is the SSE obtained by O-K-Means, which is equal to that obtained

with HOK-Means.

The ndk is an indicator related to the size of the dataset, it is the product of the

number of objects in the dataset n, the number of attributes d, and the number of groups

to form k:

𝑆𝑆𝐸 = ∑ ∑ ||𝑥 − 𝜇𝑗||
2

𝑥∈𝜇𝑗

𝑘

𝑗=1
. (3)

4.1 Design of Experiments

To evaluate the performance HOK-Means, 1350 experiments were realized in total.

Two real datasets were resolved, with k=50 and 100. 11 synthetic datasets with k=100

and 200 were resolved. All datasets were resolved with the HOK-Means, standard K-

Means, and O-K-Means algorithms.

Each configuration of dataset and k was solved 30 times with different initial

centroids. Note that the configuration is the same used in [2], but the initial centroids

are not the same, so there is a small variation in the quality percentage δ(%).

4.2 Datasets Used in Experiments

In Table 1 describes the set of datasets synthetics and real used. The first row contains

the identifier of the dataset; the second shows the number of objects (n) and the third

row shows the number of attributes (d).

Fig. 3. Solution time with real datasets.

10

Joaquín Pérez Ortega, Nancy Salgado Antunez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

In the synthetics datasets (columns 2-12) the value of n is represented in millions. In

the two last columns the real datasets used are described, which were obtained from the

UCI machine learning repository [15].

5 Results

This section shows the results of the solution of the set of datasets using the K-Means,

O-K-Means, and HOK-Means algorithms. Fig. 1 and 2 show the results obtained in the

solution of synthetic datasets and Fig. 3 and 4 for real datasets.

The x-axis represents dataset id, which is ordered by ndk index from lowest to

highest. In the graph in Fig. 1, the processing times are observed, when solving

synthetic datasets, obtained with K-Means, O-K-Means, and HOK-Means.

In each case, the processing time with HOK-Means is the least. In the lower part of

Fig. 1, it is shown: in the first row, the indicator ndk is given in millions; in the second,

the percentage of quality loss of HOK-Means with respect to K-Means δ (%); in the

third, the number of groups k; and in the last one the identifier of the dataset (Table 1).

It is remarkable that the quality of the solution (SSE) for the HOK-Means and O-K-

Means algorithms is the same, and that the δ (%) was not greater than 0.8% in the

experiment with id = 1 with the solution of synthetic datasets. For readers interested in

seeing in detail the solution quality of the datasets, refer to [2].

Fig. 2 shows the speedup performance corresponding to each of the solved datasets.

In the best case, with dataset 11, the solution time was reduced from 17 hours to less

than six minutes, 99.4% of the processing time compared to K-Means, with a quality

loss of only 0.21 %, achieving a speedup of 6.1 with respect to O-K-Means. Fig. 3

shows the processing times obtained when solving real datasets, using standard K-

Means, O-K-Means and HOK-Means.

The processing time with HOK-Means (orange line) is the shortest. In the lower part

of Fig. 3, it is shown: in the first row, the indicator ndk is given in millions; in the

second, the percentage of quality loss of HOK-Means with respect to K-Means δ (%);

in the third, the number of groups k; and in the last one the identifier of the dataset

(Table 1). In Fig. 4, the speedup performance is observed, with each real dataset.

The best result was with the DSAS dataset, and k = 100. Processing time with the

HOK-Means algorithm was reduced by 98.5% compared to K-Means, with a quality

loss of only 0.29%.

Fig. 4. Speedup obtained when solving real datasets with HOK-Means vs O-K-Means.

11

HOK-Means: A Hybrid and Parallel Clustering Algorithm Oriented to Big Data

Research in Computing Science 152(5), 2023ISSN 1870-4069

A speedup of 7.54 was achieved with respect to O-K-Means. That is, using the same

equipment, with HOK-Means the solution time was reduced from 1.36 hours to only

11 minutes, obtaining the same quality of the solution.

6 Conclusions and Future Work

This paper shows that it is feasible to parallelize a highly efficient general-purpose

improvement of the K-Means algorithm. To validate the proposal, which we call HOK-

Means, a set of experiments composed of real and synthetic datasets was designed. To

compare the results of the algorithms, all the datasets were solved using HOK-Means,

the standard K-Means, and O-K-Means algorithms. The HOK-Means algorithm is

robust even when using larger data sets; computational resources limit it.

Based on the results, it was observed that HOK-Means, in the best of cases, reduce

up to 7.54 times the solution time of a real dataset, with the following parameters n

=1,140,000; d=45 y k=100. The proposal presented in this article shows a significant

improvement in speedup, surpassing the works reported by other researchers.

It is underlined that HOK-Means tends to obtain better processing time as the

number of attributes increases. It is noteworthy that due to the data structures

implemented and the pagination in the Pandas library of the Python language, it was

possible to process large datasets.

HOK-Means is recommended for the solution of large datasets, and in particular

with a large number of attributes. To continue this research, we suggest parallelizing

other K-Means enhancements.

References

1. Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., Foufou, S., Bouras,

A.: A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE

transactions on emerging topics in computing, vol. 2, no. 3, pp. 267–279 (2014). DOI:

10.1109/TETC.2014.2330519.

2. Pérez–Ortega, J., Almanza-Ortega, N. N., Romero, D.: Balancing effort and benefit of K-

means clustering algorithms in big data realms. PLOS ONE, vol. 13, no. 9, pp. 1–19 (2018).

DOI: 10.1371/journal.pone.0201874.

3. Ansari, Z., Afzal, A., Sardar, T. H.: Data categorization using hadoop MapReduce-based

parallel K-means clustering. Journal of The Institution of Engineers, vol. 100, no. 2, pp. 95–

103 (2019)

4. Sardar, T. H., Ansari, Z.: An analysis of distributed document clustering using MapReduce

based K-means algorithm. Journal of The Institution of Engineers, vol. 101, no. 6, pp. 641–

650 (2020). DOI: 10.1007/s40031-020-00485-2.

5. Wang, Z., Xu, A., Zhang, Z., Wang, C., Liu, A., Hu, X.: The parallelization and optimization

of K-means algorithm based on spark. In: 15th International Conference on Computer

Science and Education, pp. 457–462 (2020). DOI: 10.11 09/ICCSE49874.2020.9201770.

6. Azimi, R., Sajedi, H., Ghayekhloo, M.: A distributed data clustering algorithm in P2P

networks. Applied Soft Computin, vol. 51, pp. 147–167 (2017). DOI:

10.1016/j.asoc.2016.11.045.

7. Al-Ayyoub, M., Yaseen, Q., Shehab, M. A., Jararweh, Y., Albalas, F., Benkhelifa, E.:

Exploiting GPUs to accelerate clustering algorithms. In: IEEE/ACS 13th International

12

Joaquín Pérez Ortega, Nancy Salgado Antunez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Conference of Computer Systems and Applications, pp. 1–6 (2016). DOI:

10.1109/AICCSA.2016.7945796.

8. Lutz, C., Breß, S., Rabl, T., Zeuch, S., Markl, V.: Efficient K-means on GPUs. In:

Proceedings of the 14th International Workshop on Data Management on New Hardware,

pp. 1–3 (2018). DOI: 10.1145/3211922.3211925.

9. Hadian, A., Shahrivari, S.: High performance parallel K-means clustering for disk-resident

datasets on multi-core CPUs. The Journal of Supercomputing, vol. 69, no. 2, pp. 845–863

(2014). DOI: 10.1007/s11227-014-1185-y.

10. Dafir, Z., Lamari, Y., Slaoui, S. C.: A survey on parallel clustering algorithms for big data.

Artificial Intelligence Review, vol. 54, no. 4, pp. 2411–2443 (2021). DOI: 10.1007/s10462-

020-09918-2.

11. Mackey, P., Lewis, R. R.: Parallel K-means++ for multiple shared-memory architectures.

In: 45th International Conference on Parallel Processing, pp. 93–102 (2016). DOI:

10.1109/ICPP.2016.18.

12. Pérez-Ortega, J., Almanza-Ortega, N. N., Vega-Villalobos, A., Pazos-Rangel, R., Zavala-

Diaz, J. C., Martínez-Rebollar, A.: The K-means algorithm evolution. Introduction to Data

Science and Machine Learning, Chaper 5 (2019)

13. Zavala-Díaz, J. C., Cruz-Chávez, M. A., López-Calderón, J., Hernández-Aguilar, J. A.,

Luna-Ortíz, M. E.: A multi-branch-and-bound binary parallel algorithm to solve the

knapsack problem 0–1 in a multicore cluster. Applied Sciences, vol. 9, no. 24, p. 5368

(2019). DOI: 10.3390/app9245368.

14. MacQueen, J.: Some methods for classification and analysis of multivariate observations.

In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,

pp. 281–297 (1967)

15. UCI Machine Learning Repository, archive.ics.uci.edu/ml (2022)

13

HOK-Means: A Hybrid and Parallel Clustering Algorithm Oriented to Big Data

Research in Computing Science 152(5), 2023ISSN 1870-4069

Improving Text Representations: A Systematic
Literature Review

José Hernández Hernández, Guillermo de Jesús Hoyos Rivera,
Efrén Mezura Montes

Universidad Veracruzana,
Instituto de Investigaciones en Inteligencia Artificial,

Mexico

jclementehdzhdz@gmail.com, {ghoyos,emezura}@uv.mx

Abstract. Natural Language Processing (NLP) is the area charged of designing
and developing algorithmic techniques to automatically process text aiming to
perform specific tasks related to natural language, its use, and interpretation.
These tasks must transform the text into numerical representations so that they
can be treated by computational models, such as those of Deep Learning (DL) and
Machine Learning (ML). However, we have not found so far a literature review
about text representation improvement techniques used in NLP. Most papers are
somehow centered on describing Neural Network Language Models (NNLMs).
This systematic literature review aims to provide researchers with an overview of
the different techniques for improving text representations to identify new areas
of opportunity.

Keywords: Text representations, natural language processing, language models,
word embeddings.

1 Introduction

NLP comprises the set of algorithmic and mathematical methods that are executed
by computers to “understand” human language, also known as natural language [4].
NLP is commonly used to process either, voice or written text, and attempts to solve
specific tasks, such as language generation, machine translation, question answering,
text classification, sentiment analysis, and part of speech tagging, among others.

One of the main problems of NLP is how to represent text on computers so that
they can numerically manipulate it. Thanks to DL, in recent years, researchers looking
for new NNLMs which return a set or a list of numerical values, have proposed
representations known as embeddings [19]. An embedding is a n-dimensional vector
representation containing continuous values representing a word, or a set of words, that
are part of a document or a sentence.

Such values contain information about the context where the text is found. This
information can be taken from lexical resources, or from making a specific task with
a learning approach, such as predicting words or sentences, also known as fine-tuning.
Most of the time, this information is said to be distributed along the representation
embeddings [20].

15

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 15–22; rec. 2022-08-12; acc. 2022-10-12

This outlook corresponds to the so-called distributional hypothesis [13]. It is
important to mention that NNLMs are useful for a set of tasks, and they have shown
interesting results, but indeed, they require of high computational power, and the
training time is long [16]. This is more important if fine-tuning of a pre-trained model
is desired.

Therefore, training could be impractical and could fall into over-fitting. For the
above-mentioned, it is necessary to improve embeddings, NNLMs, and pre-trained
models. This paper aims to review and summarize novel text representations techniques
that emerged after the development of NNLMs, such as Word2Vec (Word to
Vector representation), GloVe (Global Vectors for Word Representations), and BERT
(Bidirectional Encoder Representations from Transformers).

This review shows different perspectives of the state-of-the-art improving
representation techniques and, based on them, try to identify opportunity areas. The
rest of the paper is organized as follows: Section 2, presents the related works and
background of this systematic literature review. Section 3, briefly describes the used
method for this review. Section 4, details, in a narrative way, the results found with a
synthesis of the different improving text representations techniques. Finally, Section 5,
summarizes the conclusions and future work.

2 Background

This review is a meta-syntheses [22], i. e., a search for new theories, concepts, and key
subjects that could provide a view for new approaches, with qualitative information
about the analyzed research works. As a part of the background, this section briefly
describes some of the main surveys and reviews that operated as motivation to do this
systematic literature review.

In [20] a survey is conducted, which includes concepts related to pre-trained models
and their embeddings. There, the development of the distributional representations is
separated in two generations: the first one includes the Word2Vec and GloVe models,
while the second includes recurrent and attention models, such as ELMo (Embeddings
from Language Models), BERT, GPT (Generative Pre-trained Transformer), and CoVe
(Contextualized Word Vectors).

The survey states that pre-trainig is an advantage that could support language
representations, convergence speed of models, and also helps to avoid over-fitting.
An empirical survey is presented in [24]. Its goal is to describe and test
unsupervised models to represent Twitter text. It includes TF-IDF (Term-Frecuency
Inverse-Document-Frecuency), Linear Discriminant Analysis (LDA), Word2Vec,
GloVe, BERT, XLNet (Extra Long Network), and ELMo, among others.

The authors evaluate the generated representations by using clustering and found
that, for example, BERT, which is improved and has many learning parameters, is not
necessarily the best one. Other simpler methods such as TF-IDF could be used instead.
Another survey, presented in [?], describes different strategies to represent text from the
symbolic point of view, to the appearance of the distributed representations learning,
such as Word2Vec. This survey could serve as an introduction to the text representation
techniques in the DL era.

16

José Hernández Hernández, Guillermo de Jesús Hoyos Rivera, Efrén Mezura Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

In [1], a survey on word embeddings is presented. The authors describe distributed
representations based on vector space models, statistical language modeling, prediction,
and count-based models. Models such as TF-IDF, Word2Vec, GloVe, and statistical
methods such as Latent Semantic Analysis (LSA) are included. Finally, the idea of
improving the results of NLP tasks by tuning models is presented.

Based on [14], Neural Networks (NNs) that generate embeddings or text
representations are treated as language models. In this case, the authors describe
models such as Word2Vec and classic recurrent models. A very important finding of
this survey is that attention models such as BERT are considered better than other
text representations.

Finally, in [2], a survey of NNLMs is introduced, where fifty different models,
which include shallow, recurrent, convolutional, and attention models, and their
variants, are described. The authors of this survey highlight the computational
complexity of NNLM, and they propose to generate new strategies by adding common
sense and human intuition to improve text representations.

From this related work review, it can be clearly seen that research is mostly
interested in describing NNLMs, and highlighting some aspects of the improvements
made. This is why this paper focuses on describing other improvement approaches that
can be useful to add to future NNLMs implementations. To the best of the authors’
knowledge, there is no systematic literature review about the concepts which are
presented in this work.

3 Research Method

The research method implemented in this systematic literature review is that expressed
in [22], following the steps explained in the following subsections.

Scoping. Aims at responding the next questions: (1) Which are the main NNLM,
embeddings, and text representations? (2) Which are the techniques used to improve
the representations?

Searching. A sequence of search terms was conducted to identify relevant work,
including: (1) text representations, (2) symbolic text representations, (3) numerical
text representations, and (4) improvement of text representations, all of them for NLP.
Considering this work as a first step to analyze the state-of-the-art in this topic, the
search terms were handled through the Google Scholar engine, and the included main
databases were IEEExplore, Springer, ACM, Elsevier, and arXiv, with no restriction to
finding works in other sources.

Screening. In this stage, a manual screening of the papers was performed, with
special emphasis on the abstract and title of the papers.

Eligibility. An in-depth reading was performed to determine the papers eligibility
for inclusion. The following information was extracted: (1) main topics, (2) original
text representation or NNLM, (3) improving technique, (4), data type used for
experiments (word, sentence, paragraph or document), and (5) publication year or last
submission year.

Study quality. Finally, the following is the checklist (based on [15]) that was
applied to the papers quality assessment:

17

Improving Text Representations: A Systematic Literature Review

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 1. Paper scores of study quality questions.

Paper Q1 Q2 Q3 Q4 Q5 Q6 Total score Year
[6] 1 0 0 1 1 0 3 2014

[3] 1 0 1 1 1 1 5 2014

[25] 1 0 1 1 1 1 5 2014

[5] 1 1 1 1 1 0 5 2015

[26] 1 1 0 1 1 1 5 2016

[18] 1 1 0 1 1 1 5 2017

[17] 1 1 0 1 1 0 4 2018

[9] 1 1 0 1 1 1 5 2018

[21] 1 1 1 1 0 0 4 2019

[10] 1 1 0 0 0 1 3 2019

[11] 1 1 1 1 1 1 6 2019

[23] 1 1 0 1 1 0 4 2020

[12] 1 1 1 1 0 1 5 2020

[7] 1 1 1 1 0 0 4 2021

– Q1: Are the aims clearly stated?
– Q2: Is there a comparison with other methods?
– Q3: Are the used data clearly explained?
– Q4: Is it clear what is the technique used to improve the text representation?
– Q5: Are negative findings present?
– Q6: Is it clear what are the future trends in such an improving technique?

The defined checklist has six questions that can be answered with yes (1) or no
(0). Such a checklist is motivated by the research questions and the findings that can
generate new areas of opportunity. Table 1, shows the details of the score obtained, and
the corresponding publication year or last submission for each paper. It can be clearly
seen that the oldest papers were published in 2014, which coincides with the emergence
of NNLMs. Selected papers describe improving implementations, which differ from
fine-tuning.

4 Narrative of the Results

In this section, the results of the search performed are presented. Also, implicit
answers to the research questions are given by comparing and briefly summarizing
the information found. In this way, 14 primary studies are considered and described
in this section. The information about these papers is focused on improving text
representations, NNLMs output vectors, or word embeddings.

We excluded papers that describe text representations without improving them,
but it is essential to mention that NNLMs are a clear advance, and give different
views of how to process text, using contextual and non-contextual models such as
Word2Vec, GloVe, and BERT. From now on, NNLMs embeddings were used to tackle
a considerable number of NLP tasks.

18

José Hernández Hernández, Guillermo de Jesús Hoyos Rivera, Efrén Mezura Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Moreover, in various cases those embeddings were improved using different
techniques, such as term weighting, retrofitting, and adding sememes into Word
Representation Learning (WRL), or simply adding knowledge information into
representation vectors.

These tasks are usually known as fine-tuning, but in this review, we take the concept
of fine-tuning related to the re-training of an NNLM to solve a specific task, as well as
BERT does. The main difference between fine-tuning and improving representations, is
that the latter is part of a post-training, i. e., considering a vector representation from an
NNLM, and how an extra method can be included to enrich the contained information.

Another view of the improving methods takes place when external information
and knowledge, as lexical resources, are involved in model training. In the following
paragraphs, improving techniques are briefly described.

Term weighting. Using the original representation vector from the TF-IDF model,
and their own data, the authors of [11, 12] enriched the information by applying an
algorithm that modified the TF-IDF, and combined original vectors with a weighting
algorithm, respectively.

In [11], an algorithm transforms the original TF-IDF embedding into a matrix of
weights. Original TF-IDF designates a weight for each term, and in contrast, it is
proposed an algorithm that assigns different weights to a single term, considering the
classes in which it appears. On the other hand, the authors in [12] used an optimization
algorithm to add compactness and expressiveness to vectors at the sentence level.

Taking as a basis Word2Vec, the algorithm adds information about the frequency of
terms and it includes a classifier that determines the weights of each sentence. In both
cases, the resulting representation of text was employed for a classification task.

Retrofitting. This technique is a way to update resulting vectors from NNLMs by
adding semantic and lexical information. The retrofitting approach is firstly described
in [5], where authors use lexical resources such as WordNet, FrameNet, and Paraphrase
Database (PPDB) to enrich GloVe and Word2Vec embeddings via label propagation.
Such lexical resources can be taken as symbolic or knowledge representations of words
and sentences.

In [9], an explicit retrofitting approach is described, which incorporates three
elements: (1) word embeddings from an NNLM, (2) lexical resources, (3) a learning
model, where the first and second element fit the model. The resulting vector contains
the mixed information from former both elements. Such a learning model can be a NN
that has the optimization task to minimize the similarity distance while maintaining the
original embeddings aspects.Considering the first retrofitting paper, in [21] is described
a retrofitting process over vectors from ELMo.

Whereas in [26], with medical terms as the language model, applied retrofitting
with the purpose of improving the semantic similarity. Finally, in [7], using knowledge
graphs, such as those graphs from the Trans (Translation-Based Model) family, and
the retrofitting technique on a re-implemented BERT, the authors made biomedical
information extraction.

19

Improving Text Representations: A Systematic Literature Review

Research in Computing Science 152(5), 2023ISSN 1870-4069

Sememes. Sememes are included in the WRL using an extension of Word2Vec [18].
Here the authors define a sememe as the minimum semantic unit of word meanings. The
technique is based on the extension of Word2Vec and the aggregation of the attention
mechanism typical in Transformers.

Instead of words as the required context in the original Word2Vec, authors use the
HowNet sememes and senses, then the Word2Vec model is trained from scratch using
the original formalization.

Statistical methods. These methods are applied to produce embeddings and an
improvement over original representation vectors. In [6], the Canonical Correlation
Analysis is used at adding information to LSA word representations, by employing
semantic and syntactic relations from other languages, such as French, English
and Spanish.

A Clustering-based improving technique is implemented in [3], where the
algorithm is applied over words that are represented with semantic spaces such as
Hyperspace Analogue to Language (HAL), and Correlated Occurrence Analogue to
Lexical Semantic (COALS), among other methods which had not been tested in the
representation of words, such as LSA.

Knowledge incorporation. With respect to this technique, in [17] the authors
incorporate knowledge information at the training of a Word2Vec model. The resulting
vectors were evaluated in two steps: (1) predicting the relatedness of sentence pairs,
and (2) sentiment classification, also known as sentiment analysis. Another paper about
this technique is presented in [25]. In this case, a technique based on Word2Vec and the
aggregation of relations information from WordNet and PPDB is jointly trained.

The first training stage encompasses only the representation of words that appear
in a data set of text, i. e., tweets, and the latter stage, includes only the relation
information to train a model based on Word2Vec. Both stages are mixed to produce
better representations. It is relevant to note that the explicit retrofitting [9] and sememes
aggregation [18], can be incorporated in this subsection.

Iteresting improvements. This last subsection is focused on describing two
techniques, different from the above, used to improve representations. In [10], a
combinatorial Genetic Algorithm is used to select vector representations from two
different NNLMs, Word2Vec and GloVe, and the chosen one is assigned to only
one word.

Finally, in [23], with the objective to replace the position variable (commonly used
in BERT), the authors use a generalization of word embeddings through continuous
functions. As can be seen, most of the improving techniques use Word2Vec or GloVe as
the main NNLMs. On the other hand, WordNet is the knowledge lexical resource that
is used to enrich word representations.

Some of the reviewed papers are not clear about what is their improving technique
future trend, while the rest propose to continue scaling and improving their technique.
These improving efforts could be applied to transformer-based models such as BERT,
or even be part of few-shot or zero-shot learning to enrich the input to the models
used. Knowledge or symbolic information could be added as a part of a specified
task fine-tuning.

20

José Hernández Hernández, Guillermo de Jesús Hoyos Rivera, Efrén Mezura Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

5 Conclusions and Future Work

This systematic literature review briefly summarized with a narrative and
meta-syntheses way, improving techniques over NNLMs, embeddings, or text
representations. Different techniques were found, such as term weighting, retrofitting,
knowledge incorporation such as sememes, and two interesting approaches that could
provide improvements to NNLMs.

The analyzed research works had the expected level of relevancy, and they follow
the main motivation of this review: known improving techniques in text representations.
As part of future work, and emphasizing that this study is the first one of its kind, we
need to search in-depth new concepts such as WRL, sememes, zero-shot and few-shot
learning, because it is possible to find other improving techniques of representations in
general, as they can be useful for text representations.

Acknowledgments. The first author acknowledges CONACyT’s support to pursue
graduate studies.

References

1. Almeida, F., Xexeo, G.: Word Embeddings: A Survey (2019). DOI:
10.48550/ARXIV.1901.09069.

2. Babic, K., Martinčić-Ipšić S., Meštrović , A.: Survey of Neural Text Representation Models.
´ Information, vol. 11, no. 11, pp. 511 (2020). DOI: 10.3390/info11110511.

3. Brychcı́n, T., Konopı́k, M.: Semantic Spaces for Improving Language Modeling. Computer
Speech and Language, vol. 28, no. 1, pp. 192–209 (2014). DOI: 10.1016/j.csl.2013.05.001.

4. Eisenstein, J.: Introduction Natural Language Processing. The Massachusetts Institute of
Technology (2019)

5. Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., Smith, N. A.: Retrofitting
Word Vectors to Semantic Lexicons. In: Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 1606–1615
(2015). DOI: 10.3115/v1/n15-1184.

6. Faruqui, M., Dyer, C.: Improving Vector Space Word Representations using Multilingual
Correlation. In: 14th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 462–471 (2014). DOI: 10.3115/v1/e14-1049.

7. Fei, H., Ren, Y., Zhang, Y., Ji, D., Liang, X.: Enriching Contextualized language Model from
Knowledge Graph for Biomedical Information Extraction. Briefings in Bioinformatics, vol.
22, no. 3, pp. 1–14 (2021). DOI: 10.1093/bib/bbaa110.

8. Ferrone, L., Zanzotto, F. M.: Symbolic, Distributed, and Distributional Representations for
Natural Language Processing in the Era of Deep Learning: A Survey. Frontiers in Robotics
and Artificial Inteligence, vol. 6 (2020). DOI: 10.3389/frobt.2019.00153.

9. Glavaš, G., Vulić, I.: Explicit Retrofitting of Distributional Word Vectors. In: 56th Annual
Meeting of the Association for Computational Linguistics, vol. 1, pp. 34–45 (2018). DOI:
10.18653/v1/p18-1004.

10. Gunasegaran, T., Cheah, Y. N.: Evolutionary Combinatorial Optimization for Word
Embedding in Sentiment Classification. Malaysian Journal of Computer Science, pp. 34–45
(2019). DOI: 10.22452/mjcs.sp2019no3.3.

21

Improving Text Representations: A Systematic Literature Review

Research in Computing Science 152(5), 2023ISSN 1870-4069

11. Guo, B., Zhang, C., Liu, J., Ma, X.: Improving Text Classification with Weighted Word
Embeddings Via a Multi-channel TextCNN model. Neurocomputing, vol. 363, pp. 366–374
(2019). DOI: 10.1016/j.neucom.2019.07.052.

12. Gupta, S., Kanchinadam, T., Conathan, D., Fung, G.: Task-Optimized Word Embeddings for
Text Classification Representations. Frontiers in Applied Mathematics and Statistics, vol. 5,
pp. 1–10 (2020). DOI: 10.3389/fams.2019.00067.

13. Harris, Z. S.: Distributional Structure. WORD, vol. 10, no. 2–3, pp. 146–162 (1954). DOI:
10.1080/00437956.1954.11659520.

14. Jing, K., Xu, J.: A Survey on Neural Network Language Models (2019). DOI:
10.48550/ARXIV. 1906.03591.

15. Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in
Software Engineering (2007)

16. Lasse F. W. A., Kanding, B., Selvan, R.: Carbontracker: Tracking and Predicting the Carbon
Footprint of Training Deep Learning Models (2020). DOI: 10.48550/ARXIV.2007.03051.

17. Li, Y., Wei, B., Liu, Y., Yao, L., Chen, H., Yu, J., Zhu, W.: Incorporating Knowledge into
Neural Network for Text Representation. Expert Systems with Applications, vol. 96, pp.
103–114 (2018). DOI: 10.1016/j.eswa.2017.11.037.

18. Niu, Y., Xie, R., Liu, Z., Sun, M.: Improved Word Representation Learning with Sememes.
In: 55th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp.
2049–2058 (2017). DOI: 10.18653/v1/P17-1187.

19. Pilehvar, M. T., Collados, J. C.: Embeddings in Natural Language Processing, Springer
International Publishing (2021). DOI: 10.1007/978-3-031-02177-0.

20. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained Models for Natural
Language Processing: A Survey. Science China Technological Sciences, vol. 63, no. 10,
pp. 1872–1897 (2020). DOI: 10.1007/s11431-020-1647-3.

21. Shi, W., Chen, M., Zhou, P., Chang, K. W.: Retrofitting Contextualized Word Embeddings
with Paraphrases. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing, pp. 1198–1203 (2019). DOI: 10.18653/v1/D19-1113.

22. Siddaway, A. P., Wood, A. M., Hedges, L. V.: How to Do a Systematic Review: A
Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and
Meta-syntheses. Annual Review of Psychology, vol. 70, pp. 747–770 (2019). DOI: 10.1146/
annurev-psych-010418-102803.

23. Wang, B., Zhao, D., Lioma, C., Li, Q., Zhang, P., Simonsen, J. G.: Encoding Word Order in
Complex Embeddings (2019). DOI: 10.48550/arXiv.1912.12333.

24. Wang, L., Gao, C., Wei, J., Ma, W., Liu, R., Vosoughi, S.: An Empirical
Survey of Unsupervised Text Representation Methods on Twitter Data (2020). DOI:
10.48550/ARXIV.2012. 03468.

25. Yu, M., Dredze, M.: Improving Lexical Embeddings with Semantic Knowledge. In: 52nd
Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 545–550
(2014). DOI: 10.3115/v1/p14-2089.

26. Yu, Z., Cohen, T., Bernstam, E. V., Johnson, T. R., Wallace, B. C.: Retrofitting Word
Vectors of MeSH Terms to Improve Semantic Similarity Measures. In: 7th International
Workshop on Health Text Mining and Information Analysis, pp. 43–51 (2016). DOI:
10.18653/v1/w16-6106.

22

José Hernández Hernández, Guillermo de Jesús Hoyos Rivera, Efrén Mezura Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Induction of Convolutional Decision Trees with
Differential Evolution for Image Segmentation

Jesús Arnulfo Barradas Palmeros, Efrén Mezura Montes,
Héctor Gabriel Acosta Mesa, Aldo Márquez Grajales,

Rafael Rivera López

Universidad de Veracruz,
Instituto de Investigaciones en Inteligencia Artificial,

Departamento de Sistemas y Computación,
Mexico

{jesus.arnulfo.bap, li.aldoma}@gmail.com, {emezura,
heacosta}@uv.mx, rrivera@itver.edu.mx

Abstract. Convolutional Neural Networks are the dominant approach for
solving the image segmentation problem. However, they demand significant
amounts of manually labeled data for training and suffer from lacking
explainability. As an alternative, Convolutional Decision Trees take advantage of
the interpretability and simplicity of decision tree models. Nevertheless, choosing
between equivalent trees is a challenging task, given the trade-off between the
model’s precision and complexity. In this work, we propose using Differential
Evolution as a global search metaheuristic for the induction of Convolutional
Decision Trees applied to the image segmentation problem. Various tests were
conducted on the Weizmann Horse dataset, where the elevated computational
cost of determining the individuals’ fitness value limited the search. Nonetheless,
short and explainable models were induced with promising results for some parts
of the dataset. In this way, Differential Evolution appears as an attractive tool for
Convolutional Decision Trees induction, expecting future improvements.

Keywords: Convolution, decision trees, differential evolution,
image segmentation.

1 Introduction

The image segmentation problem consists of assigning a semantic label to the pixels
in an image. Differentiating an object from the image’s background is essential in most
image analysis systems. Thus, various image segmentation methods have been proposed
in the literature [7]. However, in recent years, the high performance of Convolutional
Neural Networks (CNN) as a Deep Learning technique has been proclaimed the
dominant paradigm in computer vision [12].

Therefore, various approaches using CNN have been studied for the image
segmentation problem, as shown in [3]. Despite the high-performance results reached
by CNN in different tasks, they suffer from requiring lots of labeled data for training.

23

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 23–31; rec. 2022-08-13; acc. 2022-10-12

Additionally, CNN faces the difficulty of high training time, making some
applications unsuitable for their use or demanding a specific hardware infrastructure
[8]. Consequently, some challenges remain for CNN, such as their explainability,
the efficient use of memory, and the speed to process a new instance on a
real-time application [12].

Decision Trees (DT) are a classification model characterized by their simplicity
and interpretability where internal nodes represent the test conditions and leaf nodes
are the class labels. Nonetheless, the DT induction classic process uses a greedy
recursive partitioning heuristic that suffers from adaptability in some applications.
Alternatively, various approaches to using metaheuristics for decision tree induction
have been proposed in the literature [15].

Convolutional Decision Trees (CDT) were proposed in [8] for image segmentation
and feature learning problems, performing well and using a fraction of the time needed
for training a CNN without a particular hardware configuration. This approach was
tested on the Weizmann Horse dataset [2], obtaining an F1-score of 80.4% with a
tree depth of 18. However, results showed that trees with short depths have less
adequate performance.

Three main metaheuristic-guided DT induction strategies are described in [11].
The first consists of a recursive partition strategy where the metaheuristic finds a
near-optimal partition. The second strategy uses the metaheuristic as a global search
technique that looks for the complete model of a near-optimal DT.

An essential challenge in this approach is maintaining diversity in the population.
Besides, the computational cost of the fitness value calculation increases considerably
with high-dimension datasets. Finally, the third strategy uses a previously induced DT
and continually optimizes it according to the metaheuristic.

A population-based metaheuristic used in literature for the induction of near-optimal
DT is the Differential Evolution (DE) algorithm [15]. DE is one of the most popular
metaheuristic search strategies and has been applied successfully for solving several
optimization problems. Furthermore, DE is prominent in the algorithm simplicity where
few parameters control the search process [6].

Two ways of using DE in DT induction are shown in [10, 15]. Perceptron Decision
Trees incorporate a linear combination test condition on each internal node. DE is used
to evolve the values of the tree’s structure [10]. In [15], the DE-ADTSPV method uses
DE as a global search strategy to find near-optimal parallel-axis DT coding the trees as
real-value vectors.

Both works achieved decent results in the classification accuracy obtained by their
resulting models. The use of DE in two different strategies for the induction of oblique
decision trees is studied in [16]. The first is OC1-DE, where a recursive partition
strategy is used with DE to find near-optimal partitions for each tree node. The second
method is DE-ODT, which uses a global search strategy to find a near-optimal oblique
decision tree.

The solutions representation corresponds to a real-value vector that codes the
internal values of a tree. The length of the vector depends on the number of attributes
given and the predefined depth of the tree. Both methods described showed their
effectiveness in decision tree induction.

24

Jesús Arnulfo Barradas Palmeros, Efrén Mezura Montes, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Based on the literature, it is seen that DE has been used in various DT induction
processes. Nevertheless, to the best of our knowledge, DE has not been applied for the
particular CDT induction case. Therefore, this paper uses DE as a global search strategy
to induce CDT. Consequently, DT and DE characteristics were employed to construct
an explainable model for the image segmentation problem.

The remaining structure of this document is divided into four sections. Section 2
includes the DE algorithm description. Implementation details are defined in section 3,
whereas section 4 explains the experimentation and the results obtained during tests.
Finally, section 5 contains the conclusions and suggested future work.

2 Differential Evolution (DE)

Differential Evolution (DE) is a population-based evolutionary algorithm for
optimization of complex problems [13]. DE mainly works with real-valued vectors
representing potential solutions to the problem. However, DE is also applied in the
discrete and combinatory domain [14].

The basic strategy of DE is called DE/rand/1/bin [16, 1, 5]. The general DE
procedure generates a trial vector for every individual xi or target vector in the
population. The first step consist of generating a noise vector using Equation 1 where r0,
r1 and r2 are individuals randomly selected from the population and F is a user-defined
scale factor:

vi = r0 + F (r1 − r2). (1)

Once vi is computed, the trial vector is generated stochastically. Equation 2
expresses this process. If a random number (randj) is lower than a Crossing Rate (CR)
defined by the user or the position (j) corresponds to one previously determined by
chance, the component takes the value from vi. Otherwise, it takes the value from xi:

ui,j =

{
vi,j if (randj ≤ CR) or (j = Jrand); j = 1, ..., |xi|,
xi,j otherwise.

(2)

Finally, the next step is determining which vector will be part of the next generation
population. A binary tournament between trial and target takes place where the one
with the better fitness value is chosen [16]. This selection method works as an elitism
mechanism by always keeping the best individual in the population.

Another DE variant is called DE/best/1/bin, where the main difference is in the
computation of vi. Instead of choosing a random individual as r0, the individual in the
population with the highest fitness value is chosen [6].

3 Proposal Implementation

This work proposes an analysis of the DE effectiveness for CDT induction. The
procedure implemented is based on the DE-ODT algorithm for oblique decision tree
induction proposed in [16], where the values of each node are represented in a vector
that is evolved.

25

Induction of Convolutional Decision Trees with Differential Evolution ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Fig. 1. Codification of a Convolutional Decision Tree internal convolution kernels and how a
pixel-associated instance is processed.

In this proposal, the values coded in the vector represent internal convolution kernels
for the tree. To determine which tree branch to take while classifying a dataset instance,
we propose using a perceptron-like structure similar to [10]. The product between the
instance values and the weights of a convolution kernel passes through an activation
function returning a 0 or 1 label.

Based on that label, the tree node where the instance needs to go is decided. This
procedure is repeated until a leaf node is reached, then a label is assigned to the instance.
Figure 1 illustrates the proposal. DE/rand/1/bin and DE/best/1/bin are the two DE
variants used in this work. Both versions need user-defined parameters such as scale
factor F, crossing rate CR, population size, and how many generations will run the
algorithm. Moreover, two additional parameters of the tree structure are required for
this application: kernel size and tree depth.

3.1 Images Preprocessing

The images used for the tree induction procedure are preprocessed to obtain a vector
associated with each pixel. Then, according to [10], pixels are coded as a vector of
values given by the neighbor pixels. The vector length depends on the kernel size
defined by the user. Additionally, a value of 1 is included in every instance to operate
with the bias value of the proposed perceptron-like structure.

3.2 Coding Potential Solutions

A population’s individual represents a solution consisting of a real-valued vector with
the values of convolution kernels associated with the tree’s internal nodes. The amount
of weights needed by each kernel depends on kernel size (s× s). Therefore, the weight
amount is computed as s2+1 where s is the kernel side length, and the one corresponds
to the bias value.

Another aspect to be considered when a solution is coded is the number of kernels
needed in the tree. This value depends entirely on tree depth and is determined by 2d−1,
where d is the depth defined by the user. Figure 2 shows an example of this codification.

26

Jesús Arnulfo Barradas Palmeros, Efrén Mezura Montes, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 2. Coding of pixel-associated instances and convolution kernels.

3.3 Fitness Value

The fitness value of each individual is determined by the F1-score metric based on the
precision and recall metrics. To calculate this value, we need to compute the labels
assigned to the training instances by the tree coded in each individual of the population
and compare them with the actual labels of the instances. The resulting fitness value is
between 0 and 1, and we try to maximize it using DE.

The initial population is generated with fixed length vectors of randomly chosen
values from a uniform distribution with limits -255 and 255. After that, individuals
are evaluated to compute their fitness value, and the DE procedure starts. Additionally,
the Mean Point Distance metric [?] is used in every generation to measure diversity in
the population.

3.4 Repair Operator

A repair operator is used to restrain the search space and keep the values of the tree
between -255 and 255. While computing the vi vector, if a value exceeds one of the
limits imposed, a new value is calculated as two times the exceeded limit (-255 or 255)
minus the value that infringed the restriction.

4 Experiments and Results

A single user-defined image was used to create short training and test sets as a controlled
algorithm initial test. Then, a first algorithm parameters calibration was done, obtaining
favorable results in pattern detection. These results identified that higher values of
population size and the number of generations resulted in more suitable individuals
at the end of the search. Nonetheless, both have a direct impact on the procedure’s
computational cost. After the initial tests, we executed 13 extended tests using the
Weizmann Horse Dataset [2], which consists of 328 manually segmented horses images,
allowing us to compare our results with the ones described in [8].

An image resizing procedure was applied to reduce the number of pixel-associated
instances processed in the tree induction process. Moreover, multiple tests were
conducted varying some algorithm parameters. In addition, population size and
generation number values were adjusted to make each test last less than 24 hours.
Finally, CR and F parameters were maintained at 0.9 in all executions.

27

Induction of Convolutional Decision Trees with Differential Evolution ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 1. Tests of the proposed method for Convolutional Decision Trees induction.

Test DE-var Training Popsize Generations Depth F1-score Accuracy Time(hrs)
1 Rand 2/3 40 59 3 0.4296 0.6277 22.31
2 Rand 2/3 40 59 3 0.4421 0.6770 21.21
3 Rand 2/3 40 59 3 0.4671 0.5925 21.73
4 Best 2/3 40 60 3 0.4480 0.6546 18.65
5 Best 2/3 40 60 3 0.4465 0.6473 16.75
6 Best 2/3 40 60 3 0.4730 0.6877 18.32
7 Best 1/3 46 100 3 0.4513 0.6549 21.92
8 Best 1/10 80 200 3 0.4882 0.6798 23.17
9 Best 2/10 60 120 3 0.4819 0.6846 19.76
10 Best 2/10 50 100 5 0.4531 0.6025 16.72
11 Best 1/10 60 110 7 0.4696 0.6827 21.07
12 Best 1/20 50 130 13 0.4367 0.6504 16.32
13 Best 1/25 40 100 17 0.4255 0.5881 22.22

In the first six tests, the fraction of training data was maintained with similar
population size, generation number, and a tree depth value of three. Also, the two
DE versions previously mentioned in the document were employed. The main obstacle
found was the time required for each test. Hence, the selected values of population size
and the number of generations were limited.

After that, we tried different configurations of training set size to decrease the time
consumed by the induction process, allowing us to increase parameters like the tree
depth. Without reducing the training set, the resources and time demanded would have
impeded testing deeper tree models. Table 1 shows our proposal’s results under the
above-mentioned considerations.

This table shows that DE/best/1/bin got better results and was faster than
DE/rand/1/bin when tested in similar conditions. As a consequence, this DE variant was
used during the remaining tests. Training set reduction did not significantly decrease the
method’s performance showing the model’s capacity for generalization even though the
induction process takes place with small amounts of data.

Test 8 resulting model got the highest F1-score while using only 10% of the data
for training. More complex models did not imply better results in our tests, but the
induction used even more reduced fractions of the dataset. Figure 3(a) presents the tree
induced in test 9, whereas Figure 3(b) shows a comparison of the actual mask and the
predicted mask of 12 test images from the same test.

We noticed that the model struggles with background and foreground textures, while
horses’ contour is detected in most images. In none of the test cases we achieved
similar results to the 80.4% of F1-score obtained in [8] where their method for CDT
induction takes 12 hours for training. Nevertheless, our results are comparable for
short-depth trees.

28

Jesús Arnulfo Barradas Palmeros, Efrén Mezura Montes, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 3. (a) Tree induced in test 9. (b) A sample of the segmentation results obtained by the tree
showed in (a). The letter R is used to identify the real segmented masks, and the letter P is for the
predicted ones.

5 Conclusions and Future Work

In this work, a method for CDT induction with DE is proposed and compared with
the original method proposed in [8]. The main difference is using a population-based
metaheuristic to induce several trees instead of only one with a recursive partition
strategy. Applying DE for the CDT induction faces the computational time
problem when evaluating the capacity to classify the training instances by the
population’s individuals.

This classification ability is the fitness function of DE. Moreover, this task increases
resource demand as the number of training instances is augmented. When an image
dataset is used, the amount of pixel-associated instances is quite considerable, in the
order of millions, making the labor of the model induction more complex.

In conclusion, we suffer from the search limits imposed by the computational cost
required by the induction process in our proposal. This situation forced us to use
less adequate parameters for the DE algorithm and reduce the training data fraction.
However, DE was still capable of inducing short and explainable models. Given this,
one thing to highlight is the method’s capability to train with little data without
additional processes to augment the training set.

For the model’s explainability, one could successively apply convolutional
operations to an image following the tree structure and analyze the results for each
branch and leaf node. Nevertheless, deeper tree models reduce explainability, given the
elevated model’s number of branches and kernels.

In order to make the proposed procedure proficient, it is necessary to overcome the
challenge of the computational cost of evaluating an individual. Without accomplishing
this, the capabilities of using DE as a global search tool would still be limited for
this type of problem. Future work could include trying a self-adapted DE scheme and
exploring different parameter values for kernel size and tree depth.

29

Induction of Convolutional Decision Trees with Differential Evolution ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Additionally, some improvements could be implementing techniques like
windowing [9] to reduce the number of training instances and methods like pruning to
enhance the resulting trees. For future reference, it is necessary to compare the proposal
performance with diverse approaches for image segmentation, such as U-Net and other
Convolutional Neural Networks methods [3].

Acknowledgments. The first author is funded by a Consejo Nacional de Ciencia y
Tecnologı́a (CONACYT) of Mexico.

References

1. Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A.: Differential Evolution: A
Review of More Than Two Decades of Research. Engineering Applications of Artificial
Intelligence, vol. 90 (2020). DOI: 10.1016/j.engappai.2020.103479.

2. Borenstein, E., Sharon, E., Ullman, S.: Combining Top-down and Bottom-up Segmentation.
In: Conference on Computer Vision and Pattern Recognition Workshop, pp. 46–46 (2004).
DOI: 10.1109/CVPR.2004.314.

3. Cao, F., Bao, Q.: A Survey on Image Semantic Segmentation Methods with Convolutional
Neural nNetwork. In: International Conference on Communications, Information System and
Computer Engineering, pp. 458–462 (2020). DOI: 10.1109/CISCE50729.2020.00103.

4. Contreras-Varela, L.: Un estudio sobre diversidad en optimizacion evolutiva con
restricciones, Universidad Veracruzana, Xalapa (2018)

5. Dabbagh, R. D. A., Neri, F., Idris, N., Baba, M. S.: Algorithmic Design Issues in
Adaptive Differential Evolution Schemes: Review and Taxonomy. Swarm and Evolutionary
Computation, vol. 43, pp. 284–311 (2018). DOI: 10.1016/j.swevo.2018.03.008.

6. Faiz-Ahmad, M. Mat-Isa, N. A., Hong-Lim W., Meng-Ang, K.: Differential Evolution: A
Recent Review Based on State-of-the-art Works. Alexandria Engineering Journal, vol. 61,
no. 5, pp. 3831–3872 (2022). DOI: 10.1016/j.aej.2021.09.013.

7. Hadjiiski, L., Samala, R., Chan, H. P.: Chapter 88 - Image Processing Analytics:
Enhancements and segmentation. In: Molecular imaging, pp. 1727–1745 (2021). DOI: 10.
1016/B978-0-12-816386-3.00057-0.

8. Laptev, D., Buhmann, J. M.: Convolutional Decision Trees for Feature Learning and
Segmentation. In: Pattern Recognition: 36th German Conference, pp. 95–106 (2014). DOI:
10.1007/978-3-319-11752-2 8.

9. Limon, X., Guerra-Hernández, A., Cruz-Ramı́rez, N., Acosta-Mesa, H. G., Grimaldo, F.:
A Windowing Strategy for Distributed Data Mining Optimized Through GPUs. Pattern
Recognition Letters, vol. 93, pp. 23–30 (2017). DOI: 10.1016/j.patrec.2016.11.006.

10. Lopes, R. A., Freitas, A., Silva, R. P., Guimaraes, F. G.: Differential Evolution and
Perceptron ˜ Decision Trees for Classification Tasks. In: Proceddings of 13th International
Conference on Intelligent Data Engineering and Automated Leraning, pp. 550–557 (2012).
DOI: 10.1007/ 978-3-642-32639-4 67.

11. Lopez, R. R., Reich, J. C., Montes, E. M., Chavez, M. A. C.: Induction of Decision Trees as
Classification Models Through Metaheuristics. Swarm and Evolutionary Computation, vol.
69 (2022). DOI: 10.1016/j.swevo.2021.101006.

12. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.:
Image Segmentation Using Deep Learning: A Survey. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, pp. 3523–3542 (2022). DOI:
10.1109/TPAMI.2021.3059968.

30

Jesús Arnulfo Barradas Palmeros, Efrén Mezura Montes, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

13. Opara, K. R., Arabas, J.: Differential Evolution: A Survey of Theoretical Analyses.
Swarm and Evolutionary Computation, vol. 44, pp. 546–558 (2019). DOI:
10.1016/j.swevo.2018.06.010.

14. Price, K. V.: Differential evolution. In: Zelinka, I., Snásel, V., Abraham, A. (eds) Handbook
ˇ of Optimization. Intelligent Systems Reference Library, vol. 38, pp. 187–214 (2013). DOI:
10.1007/978-3-642-30504-7 8.

15. Rivera-Lopez, R., Canul-Reich, J.: Construction of Near-Optimal Axis-parallel Decision
Trees Using a Differential-evolution-based Approach. IEEE Access, vol. 6, pp. 5548–5563
(2018). DOI: 10.1109/ACCESS.2017.2788700..

16. Rivera-Lopez, R., Canul-Reich, J.: Differential Evolution Algorithm in the Construction of
Interpretable Classification Models. Artificial intelligence-emerging trends and applications
Chapter 3, pp. 49–73 (2018). DOI: 10.5772/intechopen.75694.

31

Induction of Convolutional Decision Trees with Differential Evolution ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Proposal of a CNN-Based Approach
for Traffic Signal Detection

Madaı́n Pérez Patricio1, Carlos Alexis Ramı́rez Mendoza1,
Germán Rios Toledo1, Juan Antonio de Jesús Osuna Coutiño2

1 Tecnológico Nacional de México,
Campus Tuxtla Gutiérrez,

Mexico

2 Instituto Nacional de Astrofı́sica, Optica y Electrónica,
Mexico

{M14270620, madain.pp, german.rt}@tuxtla.tecnm.mx,
osuna@inaoep.mx

Abstract. Traffic Signal Detection (TSD) is an important module in autonomous
vehicles and Driver Assistance Systems (DAS). Although there are several
approaches to TSD, in most cases, these are based on only the 2D localization,
i.e., these systems do not provide their information to other drivers or future
travel routes. On the other hand, some works only focus on a specific signal
(traffic light) causing a bias into the signal set. To address these problems, an
alternative is to use deep networks, image metadata, and Information Technology
(IT). Motivated by the latter, we propose a methodology for traffic sign detection
and geolocation using a CNN-based approach. This strategy combines the
abstraction power of deep learning with IT and metadata information. For that,
our methodology has three steps. First, traffic sign detection provides the location
and classification of the road signs. Second, we use the image metadata to obtain
the geolocation. Third, the information technology step presents the geospatial
and classification information into an Application Programming Interface (API).
Also, we evaluate this methodology in public images and a proposed dataset with
metadata information. The quantitative experiments were conformed from the
signal detection in two urbanized environments (open imagesV6 and proposed
dataset). For that, we analyzed two labels of road signs (Traffic light, Traffic sign).
Also, our road sign detection had an average recall of 0.89, i.e., considering the
ground-truth, we recognized 89%.

Keywords: Convolutional neural network, image processing, trafic signal.

1 Introduction

The population in cities is increasing continuously, and they require more efficient
services. The concept of smart cities try to deal with these requirements incorporating
technologies as internet of things, artificial intelligence, cloud computing, among
others. These technologies are combined to providing citizens the best place to live.

33

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 33–42; rec. 2022-08-13; acc. 2022-10-12

Fig. 1. Methodology.

Transport, health, and living are the most common research subjects in the literature
related to smart cities [24]. For the transport area and autonomous vehicles, the main
idea is the efficient traffic management to reduce time lost, fuel consumption, and risks
of injury.

This problem has been treated from different perspectives. For example, vehicles
have been equipped with Advanced Driver-Assistance Systems (ADAS) that includes
powerful computer vision systems used to detect pedestrian, other vehicles and traffic
signs. On the other hand, smart traffic control systems establish rules of control traffic
to help vehicles as ambulances to reduce the lost time [11].

One of the most important objects of the urban infrastructure is the traffic signs.
They are designated to regulate the traffic and to fulfill requirements of safety and
comfort to drivers. So, an efficient method is required for automatic detection and
positioning of the traffic signs. This subject has been extensively studied in the last
few years. Autonomous driving and intelligent transportation systems also require the
precise identification of traffic signs.

Automatic traffic signs detection and positioning is a challenging task because there
are several problems such as: variable light conditions, non-standard form and size
signals, and weather changes. An approach to deal with these problems proposes the
use of smart traffic signs. They can send wireless messages to vehicles placed in the
neighborhood of the sign.

This approach requires efficient protocols of communication between smart traffic
signs and vehicles. Another approach uses computer vision based systems [27]. The
algorithms and technologies used in computer vision based systems are efficient.

Three stages are generally involved in traffic sign detection: detection, tracking and
recognition [16]. Nevertheless, the accuracy achieved in the traffic sign detection is
95.71%. For several applications, this error can be acceptable, but only one traffic sign
non-detected can produce injury in the drivers [26].

In this paper, we propose a method suited for embedded processing. The system has
two parts: a computer vision based system to traffic sign detection and a cloud based
system to traffic sign positioning. The traffic sign detected is recorded in a database and
can be updated over the time.

This information would be transmitted to drivers to reduce risks. More efficient
services are required as the population in cities is increasing. With the use of traffic signs
in the adequate positioning and number, the traffic can be reduced in the cities while the
trash collection requires efficient management of trucks, workers, and truck rides.

34

Madaín Pérez Patricio, Carlos Alexis Ramírez Mendoza, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 2. Scheme of metadata extraction.

The city planners must have a detailed and complete description of the urban
infrastructure to take well decisions. The information that city planners can take into
count must include the kind and precise position of available urban infrastructure.

Several efforts have been realized to standardize traffic signs around the world.
Nevertheless, each country and each city can define their particular traffic sign.
Therefore, there is no universal method for traffic sign identification. Fig. 2 shows an
example of geolocation using metadata extraction.

The proposed method uses a smartphone which includes a camera and a sensor of
positioning. A dataset has been created and used to train a neural network. Images
acquired by the smartphone are processed in a personal computer which yields a
map where the traffic signs are identified and positioned. This method is suited for
embedded systems.

2 Related Work

Variable light conditions, non-standard forms of the signs, changes of size of the
observed signs because of distance from the sensor, partial occlusions, and weather
changes make the traffic sign detection a challenging task. A huge quantity of
algorithms has been proposed to avoid these problems. To test algorithms proposed
by the community, several datasets have been created [9, 12, 21, 22]. As traffic signs
are different by each country and each city, a particular dataset would be required for
each city that uses this technology.

Traffic signs recognition can be performed using different methods. Methods
as proposed in [26], are based on color or shape recognition. These methods take
advantage of fact that the color or shape of traffic signs are highly visible and contrast
the surrounding neighborhood [25]. This kind of proposal has a time of processing
reduced but present weakness in presence of light changes, rotation, and viewing angle.

[19] try to deal with occluded and attached traffic signs by estimating the shape of
the arc described by the contour of the traffic sign. In [4], the color information and
object properties are used to identify regions of interest that reduces the processing
times of a support vector machine based classification algorithm. Other methods are
learning based, like the proposed by [15, 17]. They are based on the use of convolutional
neural networks, where they use a huge number of images to train it.

35

Proposal of a CNN-Based Approach for Traffic Signal Detection

Research in Computing Science 152(5), 2023ISSN 1870-4069

Fig. 3. Geolocation results.

For example, in [7], 40,000 images has been used to train the convolutional network.
These methods are robust to light changes and changes of perspective but requires a high
computational power. The use of models like the You Only Look Once (YOLO) yields
results with a high throughput and real-time processing achieving 95.15% of precision
[1]. To achieve traffic sign identification as long as possible, two cameras has been
used in [6].

A wide-angle camera select traffic sign candidates while a narrow-angle camera
is used to get a high-resolution image of the traffic sign candidate. A hardware
implementation using Field Programmable Gate Arrays devices can yield results in
real-time [20]. A preprocessing step has been applied to the image and traffic signs
using a neural network. The use of simplified Gabor wavelets and convolutional neural
networks can also achieve real-time performance [3, 18].

Reported results yields that the average processing time is 5.4 ms. Incorporating a
Global Positioning System (GPS) device in the setup can yield interesting information
for other kind of applications. In [13], road attributes has been inferred using traffic sign
identification and GPS information. On the other hand, geo-tagged Google Street View
images and a Gopro camera [27] has been used to traffic sign recognition a positioning.

GPS, inertial sensor, camera, and laser sensor are used in a van [10]. These results
show that precision of detection is highly correlated to weather conditions. To reduce
issues associated to traffic signs, wireless traffic signs has been developed [23]. They
transmit information to road users that can be reproduced with auditive signals even if
the traffic sign is not observed by the driver. Although there are several approaches to
TSD, in most cases, these are based on only the 2D localization, i.e., these systems do
not provide their information to other drivers or future travel routes.

On the other hand, some works only focus on a specific signal (traffic light) causing
a bias into the signal set. In our case, unlike the related work we propose a methodology
for traffic sign detection and geolocation using a CNN-based approach. This strategy
combines the abstraction power of deep learning with IT and metadata information.

3 Proposed Method

This section presents the proposed methodology for traffic signal detection and
geolocation. Our strategy combines the abstraction power of deep learning with
Information Technology (IT) and metadata extraction.

36

Madaín Pérez Patricio, Carlos Alexis Ramírez Mendoza, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

(a) (b)

Fig. 4. The images show traffic signal detection using our methodology in the proposed dataset
(a), and the open images V6 dataset (b).

For that, our methodology has three steps.First, traffic signal detection provides the
location and classification of the road signs. Second, we use the image metadata to
obtain the geolocation. Finally, the information technology step presents the geospatial
and classification information into an Application Programming Interface (API). The
schematic representation of the proposal is shown in Fig. 1.

3.1 Traffic Signal Detection

In this work, we use the Yolov4 architecture[2] for traffic signal detection. Although
some works only focus on specific signal detection (traffic light). This approach causes
a bias into detection, i.e., a variety of signals are omitted by the system. For that, our
network learns two labels on urbanized environments (traffic light υ1 and signal υ2).

Training set. In the training set of traffic signal detection, we use urban images
where the camera looks head-on to buildings. This set is formed of two datasets that
provide different outdoor scenes (open images V6 [8], and a proposed dataset which
can be accessed using the next link Dataset). In the open images V6 repository, we use
3000 images labeled with traffic lights and traffic signs.

On the other hand, our dataset has 2000 images labeled of the main avenues
in Tuxtla city; between 13 street northwestern and Pencil street in Tuxtla, Chiapas,
Mexico. For that, we use a Xiaomi Redmi Note 10 with a resolution of 4000×3000
pixels. We apply data augmentation in the training step. For that, we transformed image
set via mirroring.

On the other hand, we obtained the image number for training and test using the
Pareto principle or 80/20 rule [?], (80% training, and 20% test). Finally, we use a
Google colaboratory environment with 26 Gb of Ram, 150Gb storage and GPU Tesla
P100-PCIE 16Gb.

CNN. The input of the CNN is an RGB image Φ. In this case, we train the YOLOv4
network to learn two labels on urbanized environments (traffic light υ1 and signal υ2).
Also, our network uses a bounding box ϑi to delimit the elements in the image Φ. For
that, we use two colors in the bounding box ϑi. A purple bounding box ϑ1 delimits a
traffic light υ1 On the other hand, a green bounding box ϑ2 delimits a traffic signal υ2,
Fig. 4 shows examples of our detection. The training time of the CNN took roughly
10 hours.

37

Proposal of a CNN-Based Approach for Traffic Signal Detection

Research in Computing Science 152(5), 2023ISSN 1870-4069

https://drive.google.com/drive/folders/1CGkioUrAQWgXTDINpW9coOGUAuRd-$\backslash $_ht$\backslash $usp=sharing

Table 1. Routes of the proposed dataset.

Route Start Finish
1 Ave. panamericana Km. 1080 Blvd. Andres Sierra Rojas
2 Blvd. Andres Sierra Rojas Rd. Juan Crispin
3 north fifth St Libramiento norte
4 Libramiento norte Blvd. Presa chicoasen

Table 2. Signal detection evaluation.

Images number Precision Recall F-score
1000 0.76 0.69 0.72
4000 0.87 0.86 0.86
6000 0.86 0.88 0.87
7000 0.88 0.89 0.88

3.2 Metadata Extraction

Metadata is defined as the information provided about one or more aspects of the
data. In the case of the image metadata, this has a variety of information about the
description of the picture, such as its origin, size, camera, GPS, aperture, shutter speed,
among others.

In our methodology, we use the Global Positioning System (GPS) data of the images
with signal detection, i.e., we use the metadata to assign geolocation of the signals
(traffic light υ1 and signal υ2).

3.3 Information Technology

A geolocation system is an information technology solution that determines the location
of an object in a physical or virtual environment. In our case, we use the Maps
JavaScript [14] to show the geolocation in an API system. For that, we send to the
API the GPS data of the images with signal detection (traffic light υ1 and signal υ2).
This approach allows us to save and display the coordinates of traffic signals detected
using the methodology.

Also, we can provide this information to other drivers or future travel routes. Fig. 3
shows an example of the traffic signal set detected in the JavaScript map. These traffic
signals are located in the central avenue, between 13 street northwestern and Pencil
street in Tuxtla city, Chiapas, Mexico.

4 Discussion and Results

In this section, we present the experiments of signal detection. For that, the problem was
addressed as a classification problem (Traffic light, Traffic sign). On the other hand, we
evaluate two datasets that provided different outdoor scenes (open images V6 [8] and
proposed dataset). In our proposed dataset, we selected four routes of the main avenues
in Tuxtla city, Chiapas, Mexico. Table 1 shows the different routes.

38

Madaín Pérez Patricio, Carlos Alexis Ramírez Mendoza, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Table 3. Signal detection evaluation in the proposed dataset.

Clase Precision Recall F-score
Traffic light 0.94 0.97 0.95
Traffic sign 0.82 0.81 0.81

The quantitative evaluation compares our detection with the ground truth of the
signals detected. We used three measures (recall, precision and F − score) Eq. 1-3
based on the number of true positives (Tp), true negatives (Tn), false positives (Fp),
and false negatives (Fn). The true positives Tp count the number of signals whose label
was predicted correctly w.r.t. the ground truth.

To count the number of true negatives Tn, we proceed as follows: suppose that
we are interested in the traffic light, then all images with another classification than
traffic light according to the ground truth, should have received any other predicted
classification except traffic light; if that is the case, each of these detections is counted
as true negatives.

The false positives Fp correspond to all those detections whose label is incorrect.
Finally, false negatives Fn correspond to those image sections that should have received
a specific label, but the prediction did not assign it correspondingly:

recall =
Tp

Tp+ Fn
, (1)

precision =
Tp

Tp+ Fp
, (2)

F − score =
2

1

recall
+

1

precision

= 2
recall ∗ precision
recall +precision

. (3)

In our first experiment, we analyzed the performance of our network in signals and
traffic light detection. For that, we evaluate this experiment in our dataset. Table 3 shows
the result of our approach for signal detection. The evaluation with traffic light showed
a better performance since this signal has a shape standardized.

In our second experiment, we implement different training in our signal detection
network. In the proposed dataset, we use 1000, 2000, 4000 images. In the open images
V6 repository [8], we use 3000 images of the second to fourth training. On the other
hand, we only use the proposed dataset in the first training. Also, in each case, we carry
out 10,000 epochs. Table 2 shows the result of our approach for signal detection. The
evaluation with 7,000 images showed the highest detection.

5 Conclusions

In this work, we have introduced a new methodology for traffic signal detection and
geolocation using a CNN-based approach. Our strategy was to combine the abstraction
power of deep learning with IT and metadata information.

39

Proposal of a CNN-Based Approach for Traffic Signal Detection

Research in Computing Science 152(5), 2023ISSN 1870-4069

For that, our methodology has three steps. First, traffic signal detection provides
the location and classification of the road signs. Second, we use the image metadata to
obtain the geolocation.

Third, the information technology step presents the geospatial and classification
information into an API. The quantitative experiments were conformed from the signal
detection in two urbanized environments (open images V6 [8] and proposed dataset).
For that, we analyzed two labels of road signs (Traffic light, Traffic sign). Also, our
road sign detection had an average recall of 0.89, i.e., considering the ground-truth, we
recognized 89%.

On the other hand, the road sign detection had an average precision of 0.88, i.e.,
considering the classification, we classify 88.0% correctly. We should note that the
proposed methodology involves a combination of techniques based on CNN with IT
and metadata information. This methodology explores the abstraction power of deep
learning and the information that provides geolocation technologies. In our opinion,
our approach brings the best of the two worlds to address the difficult problem of traffic
signal geolocation.

On the other hand, the results obtained in this research have demonstrated the
feasibility of traffic sign detection and geolocation. Based on these results, we propose
as future work to implement the proposed methodology with an informatic system
to provide vehicle routes. In our opinion, this can increase the accuracy of route
prediction time.

References

1. Arief, R. W., Nurtanio, I., Samman, F. A.: Traffic Signs Detection and Recognition System
using the YOLOv4 Algorithm. In: International Conference on Artificial Intelligence and
Mechatronics Systems, pp. 1–6 (2021). DOI: 10.1109/AIMS52415.2021.9466006.

2. Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M.: YOLOv4: Optimal speed and accuracy of
object detection (2020). DOI: 10.48550/arXiv.2004.10934.

3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning Imbalanced Datasets
with Label-distribution-aware Margin Loss. In: 33rd Conference on Neural Information
Processing Systems NeurIPS, pp. 1–12 (2019). DOI: 10.48550/arXiv.1906.07413.

4. Cot,ovanu , D., Zet, C., Foşalău, C., Skoczylas, M.: Detection of Traffic Signs Based on
Support Vector Machine Classification using Hog Features. In: International Conference and
Exposition on Electrical and Power Engineering, pp. 518–522 (2018). DOI: 10.1109/ICEPE.
2018.8559784.

5. Craft, R. C., Leake, C.: The Pareto Principle in Organizational Decision Making.
Management Decision, pp. 729–733 (2002). DOI: 10.1108/00251740210437699.

6. Gu, Y., Yendo, T., Tehrani, M. P., Fujii, T., Tanimoto, M.: A New Vision System for Traffic
Sign Recognition. In: IEEE Intelligent Vehicles Symposium, pp. 7–12 (2010). DOI: 10.1109/
IVS.2010.5548005.

7. Slam, M. T.: Traffic sign detection and recognition based on convolutional neural networks.
In: International Conference on Advances in Computing, Communication and Control, pp.
1–6 (2019). DOI: 10.1109/ICAC347590.2019.9036784.

8. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S.,
Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., Ferrari, V.: The Open Images Dataset
v4: Unified image classification, object detection, and visual relationship detection at scale.
International Journal of Computer Vision, (2020). DOI: 10.1007/s11263-020-01316-z.

40

Madaín Pérez Patricio, Carlos Alexis Ramírez Mendoza, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

9. Lau, M. M., Lim, K. H., Gopalai, A. A.: Malaysia Traffic Sign Recognition with
Convolutional Neural Network. In: IEEE International Conference on Digital Signal
Processing, pp. 1006–1010 (2015). DOI: 10.1109/ICDSP.2015.7252029.

10. Lee, J. S., Yun, D. G.: The road traffic sign recognition and automatic positioning for road
facility management. International Journal of Highway Engineering, vol. 15, no. 1, pp.
155–161 (2013). DOI: 10.7855/IJHE.2013.15.1.155.

11. Lee, W. H., Chiu, C. Y.: Design and Implementation of a Smart Traffic Signal Control
System for Smart City Applications. Sensors, vol. 20, no. 2, pp. 508 (2020). DOI:
10.3390/s20020508.

12. Mathias, M., Timofte, R., Benenson, R., Van Gool, L.: Traffic Sign Recognition—how Far
are We From the Solution? In: International Join Conference on Neural Networks, pp. 1–8
(2013). DOI: 10.1109/IJCNN.2013.6707049.

13. Mèneroux, Y., Le-Guilcher, A., Saint-Pierre, G., Hamed, M. G., Mustière, S., Orfila, O.:
Traffic Signal Detection from In-vehicle GPS Speed Profiles using Functional Data Analysis
and Machine Learning. International Journal of Data Science and Analytics, vol. 10, no. 1,
pp. 101–119 (2020). DOI: 10.1007/s41060-019-00197-x.

14. Googel Platform: Maps javascript api www.maps-backend.googleapis.com. (2021)
15. Radu, M. D., Costea, I. M., Stan, V. A.: Automatic Traffic Sign Recognition Artificial

Inteligence-deep Learning Algorithm. In: 12th International Conference on Electronics,
Computers and Artificial Intelligence, pp. 1–4 (2020). DOI: 10.1109/ECAI50035.2020.
9223186.

16. Ruta, A., Li, Y., Liu, X.: Real-time Traffic Sign Recognition from Video by Class-specific
Discriminative Features. Pattern Recognition, vol. 43, no. 1, pp. 416–430 (2010). DOI: 10.
1016/j.patcog.2009.05.018.

17. Sermanet, P., LeCun, Y.: Traffic Sign Recognition with Multi-scale Convolutional Networks.
In: International Joint Conference on Neural Networks, pp. 2809–2813 (2011). DOI:
10.1109/ IJCNN.2011.6033589.

18. Shao, S., McAleer, S., Yan, R., Baldi, P.: Highly Accurate Machine Fault Diagnosis using
Deep Transfer Learning. IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp.
2446–2455 (2018). DOI: 10.1109/TII.2018.2864759.

19. Soendoro, D., Supriana, I.: Traffic Sign Recognition with Color-based Method, Shape-arc
Estimation and SVM. In: International Conference on Electrical Engineering and
Informatics, pp. 1–6 (2011). DOI: 10.1109/ICEEI.2011.6021584.

20. Souani, C., Faiedh, H., Besbes, K.: Efficient Algorithm for Automatic Road Sign
Recognition and its Hardware Implementation. Real-time Image Processing, vol. 9, no. 1,
pp. 79–93 (2014). DOI: 10.1007/s11554-013-0348-z.

21. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German Traffic Sign Recognition
Benchmark: a Multi-class Classification Competition. In: International Join Conference on
Neural Networks, pp. 1453–1460 (2011). DOI: 10.1109/IJCNN.2011.6033395.

22. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. Computer: Benchmarking
Machine Learning Algorithms for Traffic Sign Recognition. Neural Networks, vol. 32, pp.
323–332 (2012). DOI: 10.1016/j.neunet.2012.02.016.

23. Toh, C. K., Cano, J. C., Fernandez-Laguia, C., Manzoni, P., Calafate, C. T.: Wireless digital
traffic signs of the future. The Institution of Engineering and Technology Networks, vol. 8,
no. 1, pp. 74–78 (2019). DOI: 10.1049/iet-net.2018.5127.

24. Toh, C. K., Sanguesa, J. A., Cano, J. C., Martinez, F. J.: Advances in Smart Roads for Future
Smart Cities. In: Proceedings of The Royal Society A, vol. 476 (2020). DOI: 10.1098/rspa.
2019.0439.

25. Wali, S. B., Abdullah, M. A., Hannan, M. A., Hussain, A., Samad, S. A., Ker, P. J., Mansor,
M. B.: Vision-Based Traffic Sign Detection and Recognition Systems: Current Trends and
Challenges. Sensors, vol. 19, no. 9, pp. 2093 (2019). DOI: 10.3390/s19092093.

41

Proposal of a CNN-Based Approach for Traffic Signal Detection

Research in Computing Science 152(5), 2023ISSN 1870-4069

www.maps-backend.googleapis.com

26. Wali, S. B., Hannan, M. A., Hussain, A., Samad, S. A.: An Automatic Traffic Sign
Detection and Recognition System Based on Colour Segmentation, shape matching, and
SVM. Mathematical Problems in Engineering (2015). DOI: 10.1155/2015/250461.

27. Wu, Z.: Computer Vision-Based Traffic Sign Detection and Extraction: A Hybrid Approach
using GIS and Machine Learning. Electronic Theses and Dissertations (2019)

42

Madaín Pérez Patricio, Carlos Alexis Ramírez Mendoza, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Selection of a Fixed-Length Set
of Biologically-Constrained Association Rules

for Bacterial Vaginosis Diagnosis

Marı́a Concepción Salvador-González1, Juana Canul-Reich1, Rafael Rivera-López2,
Efrén Mezura-Montes3, Erick de la Cruz-Hernandez4

1 Universidad Juárez Autónoma de Tabasco,
División Académica de Ciencias y Tecnologı́as de la Información,

Mexico

2 Instituto Tecnológico de Veracruz,
División en Ciencias de la Salud,

Mexico

3 Universidad Veracruzana,
Instituto de Investigaciones en Inteligencia Artificial,

Mexico

4 Universidad Juárez Autónoma de Tabasco,
División Académica Multidisciplinaria de Comalcalco,

Mexico

mcsalvadorg@gmail.com, {juana.canul, erick.delacruz}@ujat.mx,
rrivera@itver.edu.mx, emezura@uv.mx

Abstract. This paper describes a Differential-Evolution-based approach for
selecting a reduced subset of association rules previously generated by the
Apriori algorithm. The selected rules are those with biological significance for
the diagnosis of Bacterial Vaginosis. We use integer-based vectors as population
individuals of the evolutionary algorithm and a combination of various rule
metrics to define the fitness function. The experimental results indicate that the
DE/best/1/bin variant performs better than the DE/rand/1/bin variant and that the
approach reaches the expected results.

Keywords: Differential evolution, association rules, bacterial vaginosis.

1 Introduction

Bacterial Vaginosis is the most common of the vaginal diseases in women of
reproductive age. It is associated with several severe health conditions such as preterm
delivery, post-abortion infection, pelvic inflammatory disease, and sexually transmitted
diseases [10]. As in other fields of knowledge, machine learning techniques have been
used to detect this condition [2].

On the other hand, Association Rule Mining is an important topic in data mining
used to identify the relationships strongly associated among itemsets in a dataset [15]. In

43

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 43–50; rec. 2022-08-14; acc. 2022-10-12

Table 1. Antecedent itemset values used in the experimental study.

Dataset feature Values Description
Cristpatus 1 crispatusA

Gasseri
2 crispatusB
1 gasseriA

Iners
2 gasseriB
1 inersA

Jensenii
2 inersB
1 jenseniA

Megasphaera
2 jenseniB
1 megasphaeraP

Atopobium
2 megasphaeraN
1 atopobiumP

Gardnerella
2 atopobiumN
1 gardnerellaP
2 gardnerellaN

Fig. 1. Encoding scheme to select N association rules.

the related specialized literature, we found that several computational techniques, such
as Simulated Annealing [6], Genetic Programming [9], Differential Evolution [14], and
Genetic Algorithms [8], have been applied to generate and optimize Association Rules
for a wide range of real applications. In particular, the Differential Evolution algorithm
has proven its effectiveness in optimizing machine learning models.

To the best of our knowledge, no study has been found in the existing literature
that applies Association Rule Mining and Differential Evolution to select biologically
meaningful rules for the diagnosis of bacterial vaginosis infection. This work addresses
the adaptation of the Differential Evolution algorithm to determine association rules
using biological constraints in cases of Bacterial Vaginosis Positive (BV+).

2 Materials and Methods

For this study, a dataset with 17 features with medical information of 201 sexually active
women aged 18 to 50 who underwent their annual gynecological inspection routine at
the Laboratory of Research in Metabolic and Infectious Diseases, Universidad Juarez
Autonoma de Tabasco is used [12]. According to our interest, we considered the records
with a positive result for bacterial vaginosis only.

After this selection, 51 records remained, with the variables representing
the Crispatus, Gasseri, Inners, and Jensenii lactobacillus, and the Megasphaera,
Atopobium, and Gardnerella bacteria. An association rule has the form X → Y , where
X is the rule’s antecedent, and Y is its consequent [1].

The metrics most commonly used for the validation of the obtained rules are the
following [7]:

44

María Concepción Salvador-González, Juana Canul-Reich, Rafael Rivera-López, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Table 2. Parameters values.
Parameter Value Parameter Value

F (Scale factor) 0.9 CR (Crossover rate) 0.5
NP (Population size) 20 MAX GEN (Number of generations) 30

– Support: The frequency count of a rule.

– Confidence: The probability that the elements in the consequent are in
the antecedent.

– Coverage: The frequency with which the rule antecedent appears.

– Lift: It compares the expected frequency of a rule with the expected frequency
at random.

– Confidence-boost: The relationship between the confidence of rules that have the
same consequent but different elements in the antecedent.

As part of association rule mining, the dataset is processed for the Apriori algorithm,
one of the most widely used algorithms for pattern discovery using frequent itemsets
to generate association rules [5]. A disadvantage of the Apriori algorithm is the
combinatorial exploitation of the rules produced, so applying techniques to obtain a
reduced set of high-quality rules is essential. Differential Evolution (DE) is an efficient
evolutionary algorithm for solving optimization problems in continuous spaces [13].

DE encodes candidate solutions through real-valued vectors and applies a difference
vector to disrupt a population of these solutions. First, a population of candidate
solutions is randomly created, then applying the DE evolutionary process that builds
a new population using mutation, crossover, and selection operators at each iteration.

Instead of implementing traditional crossover and mutation operators, DE applies
a linear combination of several candidate solutions selected randomly to produce a
new solution. Finally, DE returns the best candidate solution in the current population
when the stop condition is fulfilled. An advantage of DE is that it uses a few control
parameters: a crossover rate Cr, a mutation scale factor F , and a population size NP .

Since the information in the dataset is not numerical, the DE algorithm must
be adapted to generate optimized results. We encode the values with integer-valued
vectors, implying that the algorithm’s operators must be modified to create only feasible
solutions. Another critical element is the definition of the objective function, which
must correctly guide the evolutionary process. In the present work, metrics used
with association rules should be considered, as well as those defining the biological
significance levels for the problem under study.

3 Experimental Study

The experimental study includes three stages. First, the meaning of the values that each
attribute can take on are defined as indicated in Table 1. In total, there are 51 records in
the dataset.

45

Selection of a Fixed-Length Set of Biologically-Constrained Association ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 3. Results of 30 independent runs for each DE variant.

Test rand/1/bin best/1/bin Test rand/1/bin best/1/bin
1 36.8267 37.6078 16 37.1960 36.8431
2 37.9019 37.6666 17 37.7450 38.0588
3 37.1372 37.4919 18 37.4509 38.1372
4 36.9411 37.5294 19 37.1372 36.8235
5 37.2549 37.5686 20 36.9215 36.5098
6 36.5882 37.6666 21 37.3333 36.7058
7 36.7254 37.0980 22 37.0588 36.6862
8 37.5686 37.1568 23 38.0588 36.6862
9 36.6470 38.3333 24 38.8039 36.9019
10 37.5490 37.1764 25 36.8627 37.0000
11 36.5098 37.8431 26 37.7647 37.2941
12 36.6666 37.7450 27 38.1372 37.1372
13 36.8039 37.5098 28 37.4117 36.6470
14 37.3921 37.3921 29 37.0588 37.0000
15 36.8039 37.3921 30 38.2549 36.9019

Next, the Apriori algorithm5 is applied and 332 association rules are generated, all
for cases of BV+. Each rule ends up with one or more features in the antecedent part,
and the value of BV+ is set as the consequent since these are the cases of interest in this
work. Finally, the DE algorithm is used to find a reduced set of association rules, based
on their biological significance.

3.1 Implementation of The Differential Evolution (DE) Algorithm

Three elements are first defined to implement the DE algorithm: the individuals’
encoding scheme, the fitness function, and the variation operators.

1. Encoding scheme: An individual of the population is a subset of N association rules
each identified with an ID number. Fig. 1 shows an example of this codification.
In this work, the value of N is set to 6 since in [4] authors obtained five rules with
biological significance which were determined by a human expert, so N = 6 rules
ensures the algorithm will find this minimal set of rules.

2. Fitness function: Each i-th individual in the population is evaluated to define the
fitness value. In this work, the fitness function f(xi) is the sum of the M metrics of
the association rules encoded on the individual as follows:

f(xi) =

N∑
j=1

M∑
k=1

mj,k, (1)

where N is the number of desired association rules, M is the number of metrics
involved to define the solution quality, and mj,k is the k-th metric computed for the
j-th rule.

5 In this work, the arules R package is used to create the association rules
(cran.r-project.org/web/packages/arules/index.html).

46

María Concepción Salvador-González, Juana Canul-Reich, Rafael Rivera-López, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Table 4. Statistical values of the experimental study.

Statistical measure rand/1/bin best/1/bin
Best value 38.8039 38.3333

Mean 37.2849 37.2836

Median 37.1666 37.2352

Standard deviation 0.5575 0.4773

Worst value 36.5098 36.5098

Best test number 24 9

Median test number 16 26

Seven metrics are used in the fitness function: support, confidence, coverage, lift,
confidence boost, frequency of positive bacteria in the rules, and the occurrences of high
values of lactobacillus iners. The first five metrics are previously described in Section 2.

The other two metrics are used to determine the presence of some bacteria, and
lactobacillus [4]. These metrics are included to define the biological significance of
the association rules in this sense the higher results of the addition of the metrics have
higher significance.

3. Variation operators: Differential mutation and crossover operators are defined to
create feasible offsprings.
– Mutation: Three randomly chosen individuals of the current population (xr1 , xr2

and xr3), being different from each other and also different from the target vector,
are linearly combined to yield a mutated vector vi, using a user-specified scale
factor F to control the differential variation, as follows:

vi = ⌊xr1 + F
(
xr2 − xr3

)
⌉. (2)

Eq. 2 is related with the DE/rand/1 variant defined in [11]. Other commonly
used variant is known as DE/best/1, where the best individual in the population
xbest is combined with two random chosen individuals of the current population,
as follows:

vi = ⌊xbest + F
(
xr1 − xr2

)
⌉. (3)

– Crossover: The mutated vector is recombined with the target vector to build the
trial vector ui. For each j ∈

{
1, . . . , |xi|

}
, either xi

j or vij is selected based on
a comparison between a uniformly distributed random number r ∈ [0, 1] and the
crossover rate CR. The recombination operator also uses a randomly chosen index
l ∈ {1, . . . , |xi|} to ensure that ui gets at least one value from vi, as follows:

ui
j =

{
vij if r ≤ CR or j = l,
xi
j otherwise.

(4)

In the Eqs. 2 and 3, ⌊w⌉ symbol denotes that the w value is rounded to the nearest
integer since the encoding scheme defined for this work indicates that the parameter
values are only integers. If a parameter value of a mutated vector is outside its range, it
is replaced with a random value between 1 and 332.

47

Selection of a Fixed-Length Set of Biologically-Constrained Association ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Fig. 2. Convergence plot for the median values of the two DE variants.

3.2 Algorithm Parameters

It’s well known that the performance of the DE algorithm is affected by the values of
its parameters: F, CR, and NP [3]. The parameter values used in this work are based on
those commonly used in the existing literature [11]. Since this experimental study is a
work in progress, no parameter tuning process has been carried out.

4 Results

Table 3 shows the results of 30 independent runs with the two DE variants included in
this study (rand/1/bin and best/1/bin). The best fitness value for the rand/1/bin version
is 38.8039 on test number 24 and for the best/1/bin version is 38.3333 on test 9.
The best fitness values are highlighted in bold, and the best median value of each
variant is underlined.

The statistics comparison for each variant is shown in Table 4, and Fig. 2 depicts
the convergence plot of the run reaching the median value of the two variants. When
comparing the results of the two variants using the Wilcoxon statistical test, the
calculated p-value is 0.4065, indicating that the two variants have the same behavior.

Table 5 shows the rules encoded by the best individuals of each variant. According
to the statistical results, the best value is obtained with the rand/1/bin variant. However,
the results obtained in the independent runs and the behavior of the convergence
graph show that the best/1/bin variant had better performance in selecting the
association rules.

48

María Concepción Salvador-González, Juana Canul-Reich, Rafael Rivera-López, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Table 5. Reduced set of association rules selected by the two DE variants.

ID Association rule

Variant: best/1/bin

306 {atopobiumP, crispatusA, gardnerellaP, gasseriA, jenseniA} → {VB+}

139 {atopobiumP, gardnerellaP, inersA, megasphaeraP} → {VB+}

224 {atopobiumP, crispatusA, gardnerellaP, megasphaeraP} → {VB+}

328 {atopobiumP, crispatusA, gardnerellaP, gasseriA, inersA, jenseniA} → {VB+}

268 {atopobiumP, crispatusA, gardnerellaP, inersA, megasphaeraP} → {VB+}

210 {atopobiumP, inersA, jenseniA, megasphaeraP} → {VB+}

Variant: rand/1/bin

212 {atopobiumP, gasseriA, inersA, megasphaeraP} → {VB+}

209 {atopobiumP, gardnerellaP, gasseriA, inersA, jenseniA} → {VB+}

103 {atopobiumP, gardnerellaP, inersA} → {VB+}

124 {atopobiumP, gardnerellaP, jenseniA} → {VB+}

245 {atopobiumP, gardnerellaP, inersA, jenseniA, megasphaeraP} → {VB+}

296 {atopobiumP, crispatusA, gardnerellaP, inersA, jenseniA} → {VB+}

Likewise, all resulting rules comply with the biological significance requirement of
having at least two bacteria present [12]. Biological significance adds weight to rules
that carry bacteria and, at the same time, show high levels of lactobacillus iners.

5 Conclusions and Future Work

The experimental results shown have been validated by an expert biologist, who
observed that multiple combinations of present bacteria (indicated with the letter P) and
absent lactobacillus (indicated with the letter A) could lead to the disease appearance in
the resulting rules.

Thus, the algorithm’s behavior using the coding scheme and the fitness function
lead to rules with biological significance. Furthermore, our results show that using DE
to select association rules created with Apriori is a promising approach to identifying a
high-quality and compact rule set for BV diagnosis.

In future work, it is crucial to continue with the validation of the rules by a
human expert to corroborate their feasibility. Another point is to add penalties in the
fitness function for antecedent itemsets unlikely to occur when there exists a positive
consequent.

Additionally, new encoding schemes will be studied so that the number of selected
rules is not previously defined. In this sense, it is also proposed to test with other DE
variants and try different techniques for the algorithm-parameter-tuning to improve the
algorithm performance.

49

Selection of a Fixed-Length Set of Biologically-Constrained Association ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in
Large Databases. In: Proceedings of the International Conference on Management of Data,
pp. 207–216 (1993). DOI: 10.1145/170035.170072.

2. Baker, Y. S., Agrawal, R., Foster, J. A., Beck, D., Dozier, G.: Applying Machine Learning
Techniques in Detecting Bacterial Vaginosis. In: The International Conference on Machine
Learning and Computing, vol. 1, pp. 241–246 (2014). DOI: 10.1109/ICMLC.2014.7009123.

3. Das, S., Suganthan, P. N.: Differential evolution: A Survey of The State-of-the-art.
In: IEEE Transactions on Evolutionary Computation, vol. 15, pp. 4–31 (2011). DOI:
10.1109/TEVC.2010.2059031.

4. De la Cruz, F., Canul-Reich, J.: Reglas de asociacion para estudiar patrones bacterianos
´ involucrados en el desarrollo de vaginosis bacteriana. Komputer Sapiens, vol. 14, no. 2
(2022)

5. Dongre, J., Prajapati, G. L., Tokekar, S. V.: The Role of Apriori Algorithm for Finding
the Association Rules in Data Mining. In: International Conference on Information and
Computer Technologies, pp. 657–660 (2014). DOI: 10.1109/ICICICT.2014.6781357.

6. Guo, H., Li, Y., Liu, X., Li, Y., Sun, H.: An Enhanced Self-adaptive Differential
Evolution Based on Simulated Annealing for Rule Extraction and its Application in
Recognizing Oil Rservoir. Applied Intelligence, vol. 44, no. 2, pp. 414–436 (2016). DOI:
10.1007/s10489-015-0702-x.

7. Hahsler, M.: A Probabilistic Comparison of Commonly Used Interest Measures for
Association Rules. Southern Methodist University (2015)

8. Leske, M., Bottacini, F., Afli, H., Andrade, B. G. N.: BiGAMi: Bio-objective Genetic
Algorithm Fitness Function for Feature Selection on Microbiome Datasets. Methods and
Protocols, vol. 5, no. 3 (2022). DOI: 10.3390/mps5030042.

9. Luna-Romera, J. M., Reyes, O., del Jesús-Dı́az, M. J., Soto, S. V.: Reglas de asociacionnen
datos multi-instancia mediante programación genética gramatical. In: Congreso de la
Asociacion Española de Inteligencia Artificial: Avances en Inteligencia Artificial, pp.
815–820 (2018)

10. Pérez-Gómez, J. F., Canul-Reich, J., Hernández-Torruco, J., Hernández-Ocaña, B.: Predictor
Selection for Bacterial Vaginosis Diagnosis using Decision Tree and Relief Algorithms.
Applied Sciences, vol. 10, no. 9, pp. 3291 (2020). DOI: 10.3390/app10093291.

11. Price, K., Storn, R. M., Lampinen, J. A.: Differential evolution: A Practical Approach to
Global Optimization (2006). DOI: 10.1007/3-540-31306-0.

12. Sanchez-Garcia, E. K., Contreras-Paredes, A., Martinez-Abundis, E., Garcia-Chan, D.,
Lizano, M., de la Cruz-Hernandez, E.: Molecular Epidemiology of Bacterial Vaginosis and
Its Association with Genital Micro-organisms in Asymptomatic Women. Journal of Medical
Microbiology, vol. 68, no. 9, pp. 1373–1382 (2019). DOI: 10.1099/jmm.0.001044

13. Storn, R., Price, K.: Differential Evolution – a Simple and Efficient Heuristic for Global
Optimization Over Continuous Spaces. Global Optimization, vol. 11, no. 4, pp. 341–359
(1997). DOI: 10.1023/A:1008202821328.

14. Wang, C., Liu, Y., Zhang, Q., Guo, H., Liang, X., Chen, Y., Xu, M., Wei, Y.: Association Rule
Mining Based Parameter Adaptive Strategy for Differential Evolution Algorithms. Expert
Systems with Applications, vol. 123, pp. 54–69 (2019). DOI: 10.1016/j.eswa.2019.01.035.

15. Zhang, C., Zhang, S.: Association Rule Mining: Models and Algorithms (2002). DOI:
10.1007/ 3-540-46027-6.

50

María Concepción Salvador-González, Juana Canul-Reich, Rafael Rivera-López, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Vehicle Make and Model Recognition

with Generation of New Classes

Using Clustering Techniques

Diana Itzel Vázquez-Santiago, Héctor Gabriel Acosta-Mesa,

Efrén Mezura-Montes

Universidad Veracruzana,

Artificial Intelligence Research Institute,

Mexico

zs21000454@estudiantes.uv.mx, {heacosta, emezura}@uv.mx

Abstract. One of the main problems faced by supervised learning classification

algorithms is scalability. No matter how good their classification accuracy is,

they are not able to classify objects for which they were not trained. In this paper

we propose a solution to this problem specifically aimed at vehicle make and

model recognition. We used a Convolutional Neural Network (CNN) for

classification and feature extraction, addressing the scalability problem by using

two clustering techniques: K-means and MOCK. For the generation of new

classes, we used the feature vectors extracted by the CNN of the images that do

not belong to any of the classes with which the model was trained. The results

showed that with the learning generated by a CNN it is possible to generate

feature vectors with similarities for objects of the same class even if the network

was not trained to classify them, which made it possible to generate new classes

using unsupervised learning such as clustering.

Keywords: Scalability, CNN, clustering, MOCK.

1 Introduction

Automatic vehicle makes and model recognition aims to offer innovative services to

improve the efficiency and safety of transportation networks. Some of these services

are intelligent traffic analysis and management, electronic toll collection, emergency

vehicle notifications, automatic enforcement of traffic rules, etc. The main problem, in

the specific case of this application domain, is that most of the applied approaches for

vehicle make and model recognition require large amounts of data to correctly train

a model.

It is estimated that there are currently more than 3,300 vehicle makes in the world,

which have added and removed models from the market, modifying the design in each

generation and producing different versions of the same vehicle which has made

impossible to have a database containing all existing vehicles.

51

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 51–59; rec. 2022-08-17; acc. 2022-10-12

mailto:zs21000454@estudiantes.uv.mx

This limitation leaves us with a scalability problem that results in vehicles that

cannot be classified correctly because the algorithms were not trained to

recognize them.

In this work, we propose a feasibly solution to the scalability problem of

classification algorithms that use supervised learning by using clustering algorithms to

generate new classes using the feature vectors extracted by our classification algorithm.

In the state of the art, the scalability problem has been addressed by authors such as

Nazemi et al. [1] from an anomaly detection approach.

Their base system is capable of classify 50 specific vehicle models, to which they

added an anomaly detection to identify vehicles that do not belong to any of the 50

classes, to subsequently classify them based on their dimensions within 2 new classes:

"Unknown heavy" and "Unknown light".

Other authors such as Kezebou et al. [4] proposed a Few-Shots Learning approach

requiring between 1 and 20 images for the generation of new classes.

2 Methodology

For this work, the VMMRdb database [2] was used since it is one of the most cited in

the specialized literature. With the intention of simplifying the problem for analysis,

only five classes were used: Dodge Grand Caravan 2005, Ford Explorer 2002, Ford

Mustang 2000, Nissan Altima 2005 and Toyota Camry 2007 to train a CNN whose

architecture was proposed in the Microsoft technical documentation library [3] with

which training and testing times of 2m24s were achieved with accuracies between 90%-

95% in 5 epochs.

Since the main objective of this project is to have an algorithm capable of classifying

vehicles even if they do not belong to any predefined class, an algorithm was designed

Algorithm 1: PESA-II Pseudocode

1 Initialize a random (internal) population IP

2 Evaluate each member of IP

3 Initialize the external population EP to the empty set

4 repeat

5 Incorporate non-dominated vectors from IP into EP

6 Delete the current contents of IP

7 repeat

8
With probability Pc, select two parents from EP, where Pc= Crossover

probability

9 Produce a single child via crossover

10 Mutate the child created in the previous step

11 With probability 1 – Pc, select one parent

12 Mutate the selected parent to produce a child

13 until the population IP is filled;

14 until termination criteria is met;

15 Return the members of EP as the result

52

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

to generate new classes from the clustering of images that do not belong to the classes

with which the CNN was trained.

The feature vectors of the images (extracted with the CNN) were used to perform

clustering using two algorithms for comparison purposes. The first clustering algorithm

is K-means.

The original version of the algorithm was implemented in Python and in the interests

of have an additional comparison, a second version was developed using the sklearn

library, which implements the K-means clustering algorithm. See section 2.3 for

more details.

The second clustering algorithm named MOCK employs a multi-objective

evolutionary approach named PESA-II. This algorithm attempts to minimize two

objectives that are in conflicting with each other (intra-cluster variation and the number

of clusters).

The concept of Pareto dominance is used to find a set of different non-dominated

clustering solutions that achieve a good trade-off between the two objectives. PESA-

II’s pseudocode is shown in Algorithm 1. See section 2.4 for more details.

2.1 Image Preprocessing

The images went through a few processes to fit the model. The first was to segment the

images of each class according to the views they showed (front, rear, and side). Due to

the scope of the project, we work only with the rear views of the five classes mentioned

in Section 2.

Table 1 shows the volume of images (rear views) available per class. Twenty images

from each class were chosen for testing and the rest for training, however, as can be

seen in Table 1 the volume of images was low and not balanced to adequately train

the CNN.

To solve these problems, data augmentation and balancing processes were

performed on the training set. After these processes, the final number of images for

training per class was 1,000 and the twenty images that were originally selected for

testing were kept without data enhancement.

Table 1. Comparison between data volumes per class.

Class

Images

(Rear

view)

Training

(Before

augmentation)

Training

(After

augmentation)

Test

(No

augmentation)

Dodge Grand

Caravan 2005
164 144 1,000 20

Ford Explorer

2002
234 214 1,000 20

Ford Mustang

2000
216 196 1,000 20

Nissan Altima

2005
294 274 1,000 20

Toyota Camry

2007
170 150 1,000 20

53

Vehicle Make and Model Recognition with Generation of New Classes ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

The next process was to reduce the dimensions of the images (training and testing)

since the CNN architecture required input dimensions of 32x32x3. With the processes

mentioned above, the classification model achieved accuracies between 80%-85%.

To improve recognition accuracy the images were cropped to preserve only the

region of interest (ROI), which improve the accuracy by up to 10%.

2.2 Convolutional Neural Network (CNN)

This project was implemented in Python mainly because of the access to the PyTorch

library which provides support for the development of applications related to machine

learning, computer vision, natural language processing, etc. More specifically, it has a

base class for all Convolutional Neural Networks modules, which facilitates its

implementation and execution.

Initially in this project, it was proposed to work with well-known CNN architectures

such as AlexNet or VGG, however, in the first stages, tests were carried out and

execution times were time consuming (30min-50min) achieving a maximum accuracy

of 60%.

Because of this, we chose to use an architecture found in the Microsoft technical

documentation library [3], which can be seen in Fig 1. Originally, the network was

designed to work with the CIFAR10 database, so the input dimensions were 32x32x3.

Even with the possible loss of information, it was decided to keep this architecture

and resize the images of the VMMRdb database to fit, since even without the data

balance, the cropping of the ROI and with the resizing, accuracies of 70% were

achieved. The only modification to the architecture was to change the output of the

fully connected layer to five (number of classes).

In the training stage, 20-image subsets of the training data were generated and

reorganized at each epoch to reduce overfitting. For the update of the network weights

during training, the Adam optimizer was used with a learning rate of 0.001 and a weight

decrease of 0.0001.

Finally, for the performance evaluation, two indicators were used in each epoch, the

first indicator was to evaluate the classification accuracy of the network with the whole

test set (20 images as shown in Table 1) and the second indicator was with the Cross

Entropy loss function which is mathematically expressed in (1). Where i is the class, c

is the number of classes, yi is the actual class and ŷi is the predicted class:

−∑𝑦𝑖 log �̂�𝑖

𝑐

𝑖=1

, (1)

Fig. 1. Architecture of the convolutional neural network used and proposed in the Microsoft

technical documentation library [3].

54

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

2.3 K-means Clustering

As mentioned above, the aim of this project is to have an algorithm capable of

classifying vehicles even if they do not belong to any predefined class. The first

approach implemented for the generation of new classes was K-means clustering. Two

implementations of this algorithm were developed.

The first was implementing the classical version of the algorithm. The second was

using the version developed by sklearn library, initializing the centroids of the clusters

with the Lloyd algorithm.

We decided to test the k-means algorithm in its two versions with nine images of

three unknown classes to the CNN (three images of each class), to confirm if the

clustering algorithms were able to group the images by model. The clustering process

was performed using the feature vectors extracted by the CNN, which, as can be seen

in Fig 1. had 2,400 features.

2.4 MOCK Clustering with Multi-Objective Evolutionary Approach (PESA-II)

The second approach implemented for the generation of new classes was a multi-

objective clustering algorithm with automatic determination of the number of clusters

(MOCK) optimized with a multi-objective evolutionary algorithm (MOEA), called

PESA-II proposed by Corne et al. [5].

The encoding of individuals uses a representation where each individual g is made

up of N genes, g1,...,gN, where N is the number of data to be clustered and the value j

Table 2. Comparison between Convolutional Neural Network executions. The execution with

the most accurate result is highlighted in bold.

Execution
Cross Entropy

Loss
Accuracy

Accuracy per class

Dodge

Grand

Caravan

2005

Ford

Explorer

2002

Ford

Mustang

2000

Nissan

Altima

2005

Toyota

Camry

2007

1 0.294 95% 95% 100% 95% 90% 95%

2 0.290 91% 100% 85% 90% 90% 90%

3 0.295 92% 100% 95% 90% 95% 80%

4 0.313 93% 95% 95% 85% 95% 95%

5 0.300 91% 95% 100% 95% 90% 75%

6 0.311 92% 90% 100% 85% 100% 85%

7 0.247 90% 100% 95% 90% 90% 75%

8 0.313 93% 100% 90% 90% 85% 100%

9 0.303 91% 90% 85% 95% 95% 90%

10 0.321 94% 100% 85% 95% 95% 95%

Average 92.2% 97% 93% 91% 93% 88%

55

Vehicle Make and Model Recognition with Generation of New Classes ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

assigned to the i-th gene represents a union between the j and i data. A minimum

spanning tree (MST) was generated with the Prim algorithm to initialize the population.

The MST represented the first individual and for the subsequent generation of the

population the (i - 1) longest connections were eliminated. In the genotype, this was

reflected by assigning to itself the gene representing the connection. The decoding of

this representation requires the identification of all the subgraphs since the data

belonging to each subgraph is assigned to a cluster.

The variation operators used are the uniform crossover and the nearest neighbor

mutation operator, which limits the search space since it can only generate connections

between the nearest neighbors of the gene being mutated. In this approach, there are

two objective functions to be minimized:

1. Cluster Compactness or global deviation, which is calculated by summing the

distances between each datum and its corresponding centroid in a given cluster and

is mathematically represented as:

Dev(𝐶) = ∑ ∑ 𝛿(𝑖, 𝜇𝑘)𝑖𝜖𝐶𝑘𝐶𝑘𝜖𝐶 , (2)

where C is the set of clusters Mk is the centroid of cluster Ck, i is each element of the

data set and δ(...) is the Euclidean distance.

2. Cluster Connectivity which evaluates if the nearest neighbors of an element have

been placed in the same cluster as the current element and is mathematically

represented as:

Conn(𝐶) = ∑(∑𝑥𝑖,𝑛𝑛𝑖(𝑗)

𝐿

𝑗=1

) , donde 𝑥𝑟,𝑠 = {

1

𝑗
 𝑠𝑖 ∄𝐶𝑘: 𝑟, 𝑠 ∈ 𝐶𝑘 ,

0 de lo contrario,

𝑁

𝑖=1

 (3)

where C is the set of clusters, N is the amount of data in the dataset, L is the amount of

nearest neighbors (user-defined parameter), nni(j) is the jth nearest neighbor and xr,s is

the penalty function.

There will only be penalties if any jth nearest neighbor is not in the same cluster as

the ith data. PESA- II’s pseudocode is shown in Algorithm 1 where the use of two

populations of solutions can be highlighted: IP which has a fixed size and is responsible

Fig. 2. Pareto fronts obtained in 5 executions of the MOCK algorithm.

56

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

for exploring new solutions and EP which has a limited, but not fixed size and has the

job of exploiting good solutions since it consists of "niches" distributed over the

objective space (Pareto Front).

In each generation, the generated solutions (IP) are evaluated and those that are in

the objective space are selected to become part of EP, preferring those solutions that

occupy less crowded spaces (the "niches" are avoided) to try to completely cover the

Pareto Front.

3 Results

To address the problem of scalability of classification algorithms that use supervised

learning, it is essential for our proposal to have a classifier with good recognition

accuracy to differentiate between images that belong to the predefined classes from

those that do not.

To test the classification accuracy of our model the CNN implemented and detailed

in Section 2.2 was trained and tested 10 times with the 5 classes of the VMMRdb

database [2] mentioned in Section 2 which went under the data augmentation and

balancing processes mentioned in Section 2.1. Table 2 shows the accuracy results

obtained in the 10 training-testing executions.

Due to the scope of the project, it is left as future work the implementation of a

novelty detection technique to automatically detect images that do not belong to the

predefined classes to which the clustering will be applied to generate new classes.

Given the above, in order to show that the K-means and MOCK algorithms were

able to cluster the images of the unknown classes for the CNN and thus generate new

classes, nine images of three unknown models (three of each class) were entered into

the CNN: Ford Ranger 2019, Toyota Prius 2019 and Volkswagen Beetle 2013 which,

as expected, generated a misclassification as it was not trained for those classes,

however, what was important in this case was to obtain the feature vectors generated

by the CNN to enter them into the clustering algorithms.

For the execution of MOCK the parameters were calibrated as follows: Number of

generations = 100, Maximum External Population Size = 15, Internal Population

Size = 8, L nearest neighbors = 3, Crossover Probability = 0.5. Fig. 2 shows the Pareto

Fronts obtained in five executions of the algorithm.

It is important to remember that the clustering process by definition is subjective.

Also, it should be considered that each time the CNN is trained, it will learn in a unique

way and will be reflected in the weights that are set at the end of the training, therefore,

the features extracted after each training will depend on those learned weights.

Taking these two points into consideration, five tests of the clustering algorithms

were performed using five sets of feature vectors obtained from five executions of the

CNN with different weights. Only with one of the sets the desired clustering was

achieved by both clustering approaches as shown in Fig. 3.

Initially the hypothesis was that MOCK would outperform K-means, however the

results showed similar performances where the only advantage shown by MOCK was

the automatic determination of the number of clusters. To get a better understanding of

the results, five distance matrices of the five sets of feature vectors extracted by the

57

Vehicle Make and Model Recognition with Generation of New Classes ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

CNN were performed using the Euclidean distance since the same metric was used in

the clustering algorithms.

This test showed that only in one of the matrices the feature vectors belonging to the

same classes were spatially close and it was with that set that the clustering algorithms

achieved the desired clustering.

One point to highlight with the K-means approach is that the addition of the Lloyd

algorithm implemented by sklearn library for the initialization of the centroids gave it

a great advantage over the classical version that did not achieve the expected

classification in any of the executions.

Finally, it was noted that in most cases the clustering were related to the predominant

shades in the images, which indicates that it may be preferable to work with grayscale

images to prevent bias.

4 Conclusions and Future Work

In this work a feasibly solution to the scalability problem was presented, confirming

that it is possible to generate new classes using clustering algorithms to group images

based on the feature vectors extracted by the classification model even if the classes are

unknown. However, it was observed that the feature vectors belonging to the same

classes were not in close regions in terms of Euclidean distance.

The research carried out after this project reflected that this distance metric is

recommended only to compare points in two or three dimensions. In larger dimensional

spaces, all points tend to be far apart, then other measures will be explored such as the

cosine distance. Another point to consider is that the feature vectors will depend on the

training of the network, specifically the learned weights, which can

influence negatively.

To achieve a better control, we propose the use of neuroevolution of CNNs with an

objective function that measures the consistency of the feature maps. By doing this, we

could get feature vectors located spatially close if they belong to the same class, and far

away if they belong to different classes. In the literature review, this has been achieved

using techniques such as Contrastive Loss [7].

Regarding the clustering algorithms, according to authors such as Martínez-Peñaloza

et al. [6], better results were achieved using the MOEA NSGA-II compared to the

original version of MOCK, which uses PESA-II.

Since in this work there were no explicit differences between K-means and MOCK,

it is proposed to use the optimized version with NSGA-II to try to achieve better results.

Finally, it is proposed as future work to increase the number of classes and perform a

novelty detection to automatically recognize vehicles that do not belong to the labels

with which the CNN is trained and perform clustering on them.

Fig. 3. Classification expected and obtained with the K-means and MOCK algorithms.

58

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Acknowledgments. The authors would like to thank the Consejo Nacional de Ciencia

y Tecnología (CONACYT), an institution of the Government of Mexico, for the

financial support provided through the "Beca Nacional" as part of the Programa de

Becas para Estudios de Posgrado.

References

1. Nazemi, A., Azimifar, Z., Shafiee, M., Wong, A.: Real-time vehicle make and model

recognition using unsupervised feature learning. IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 7, pp. 3080–3090 (2019). DOI: 10.1109/TITS.20

19.2924830.

2. Tafazzoli, F., Frigui, H., Nishiyama, K.: A large and diverse dataset for improved vehicle

make and model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pp. 1–8 (2017). DOI: 10.1109/CVPRW.2017.121.

3. Kezebou, L., Oludare, V., Panetta, K., Agaian, S.: Few-shots learning for fine-grained vehicle

model recognition. In: IEEE International Symposium on Technologies for Homeland

Security, pp. 1–9 (2021). DOI: 10.1109/HST53381.2021.9619823.

4. Corne, D. W., Jerram, N. R., Knowles, J. D., Oates, M. J.: PESA-II: region-based selection

in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on

genetic and evolutionary computation, pp 283–290 (2001). DOI: 10.5555/29552 39.2955289.

5. Martínez-Peñaloza, M. G., Mezura-Montes, E., Cruz-Ramírez, N., Acosta-Mesa, H. G., Ríos-

Figueroa, H. V.: Improved multi-objective clustering with automatic determination of the

number of clusters. Neural Computing and Applications, vol. 28, no. 8, pp. 2255–2275

(2017). DOI: 10.1007/s00521-016-2191-1.

6. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pp. 2495–2504 (2021).

DOI: 10.1109/CVPR46437.2021.00252.

59

Vehicle Make and Model Recognition with Generation of New Classes ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

Western Blot Pattern Classification Using

Convolutional Neural Networks

for Breast Cancer Diagnosis

José Luis Llaguno-Roque1, Rocio Erandi Barrientos-Martínez2,

Héctor Gabriel Acosta-Mesa2, Tania Romo-González1

1 Universidad Veracruzana,

Instituto de Investigaciones Biológicas,

Mexico

2 Universidad Veracruzana,

Instituto de Investigaciones en Inteligencia Artificial,

Mexico

{lllaguno, rbarrientos, heacosta, tromogonzalez}@uv.mx

Abstract. In Mexico, breast cancer is the leading cause of women's death. This

work aims to discriminate between healthy and breast cancer patients based on

the band patterns obtained by western blotting using deep learning techniques.

This work proposes Convolutional Neural Networks (CNN) to classify breast

cancer. CNN reaches 68.24% of the classification rate in three classes (healthy,

benign breast pathology, breast cancer) and 81.43% in two class labels (healthy,

breast cancer).

Keywords: Breast cancer, convolutional neural networks, western blot,

Fourier transform.

1 Introduction

Breast cancer has become a global health problem since it represents the first place in

incidences and the fifth place in cancer mortality worldwide [1]. In Mexico, breast

cancer is the leading cause of death in women between the ages of 30 and 54, surpassing

cervical cancer since 2006, becoming a public health problem and a severe challenge

for the health system [2].

Several methods complementing each other as a whole are proposed for its

diagnosis. These methods include a clinical breast examination, ultrasound,

mammography, and biopsy. However, these methods are ineffective in the early cancer

detection, since they aim is to identify the disease. Moreover they are invasive,

subjective, expensive, and in sometimes painful [3-4].

In contrast to the traditional methods for breast cancer diagnosis, some other

techniques detect tumor particles before the disease develops. In other words, these

61

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 61–68; rec. 2022-08-17; acc. 2022-10-12

methods identify the autoantibodies dedicated to recognizing tumor proteins present up

to 4 years before the disease detection [5].

For example, Desmetz et al. [6] discriminate accurately between healthy patients and

those with early-stage breast cancer, especially carcinoma in situ, by evaluating the

autoantibody response to a set of tumor-associated antigens. The result obtained from

this work could help in the early detection of breast cancer, especially in women

under 50.

Similarly, Romo-González et al. [7] describe a method that corroborates the presence

of autoantibodies against tumor cells of the T47D cell line (ductal carcinoma of the

breast), allowing distinguishing women with and without breast pathology. In this

work, the bands' analysis expressed in the one-dimensional Western Blot images in

which the autoantibodies react of the T47D tumor line antigens.

Although the results are promising, the image analysis is very complex, subjective,

and time-consuming, taking up to a month to create the binary database. It is because

image analysis requires the expert to align the bands of each patient's strips with the

Quantity One software from Bio-Rad Laboratories (Fig. 1). As a result, the final bands'

identification and their position depend on the expert eye.

Fig. 1. Example of an image containing 15 to 17 nitrocellulose membrane strips obtained from

the Western Blot method for specific protein antigens (T47D) in each patient's serum sample.

62

José Luis Llaguno-Roque, Rocio Erandi Barrientos-Martínez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

A semi-automated protein band analysis system was designed to avoid subjectivity

and delays due to image analysis, classifying band patterns by time series [8]. The time

series data corresponds to the band's pixel shade variation.

Since time series were different lengths, they were adjusted to the same length with

a geometric scaling transformation. Afterward, the K-nearest neighbor algorithm with

Euclidean, Mahalanobis, and Correlation similarity distances was used for classifying

time series. This method reaches a classification rate of 65.40% with three classes

(healthy, benign breast pathology, breast cancer) and 86.06% with two class labels

(healthy, breast cancer).

Although the classification rate achieved was high and similar to the expert, the

method is considered semi-automatic since an area is subjectively chosen in each strip

for the band analysis, resulting in a variation of the time series length.

For this reason, in the present work, we proposed to discriminate between healthy

patients, patients with benign breast pathology, and patients with cancer using the bands

of Western blot images of antigen-reactive antibodies (tumor line T47D - ductal

carcinoma) and convolutional neural networks.

Our primary objective is to reach a classification rate of 84% at least, avoiding

subjectivity and analyzing images directly instead of extracting time series from

selected areas [8].

2 Methodology

Figure 2 shows the proposed methodology. The employed database contains 149

nitrocellulose membrane strips images with band expression obtained from the Western

Blot of autoantibody binding to specific protein antigens (T47D), of which 50

correspond to patients with breast cancer, 50 with benign breast pathology, and 49 to

healthy patients.

Fig. 2. Proposed Methodology.

63

Western Blot Pattern Classification Using Convolutional Neural Networks ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

These images were provided by the Biology and Integral Health Area of Instituto de

Investigaciones Biologicas of the Universidad Veracruzana, following the ethical

norms and with the corresponding informed consent of the participants. Furthermore,

the protocol was reviewed and approved by the Research Ethics Committee of the

Hospital General de México "Dr. Eduardo Liceaga" (DI/12/111/03/064).

Finally, it is essential to mention that this study conforms to the Code of Ethics of

the World Medical Association (Declaration of Helsinki), printed in the British Medical

Journal (July 18, 1964). The images have been used in 3 ways: 1) Color, with

dimensions of 256x256 pixels, 2) Grayscale, with dimensions of 256x256 pixels, 3)

Grayscale applying the Fourier transform, with dimensions of 256x15 pixels.

To achieve the classification of western blot bands in healthy patients and cancer

patients, a Convolutional Neural Network was trained, which was designed by

iteratively and manually adjusting the number and type of hidden layers as well as the

parameters of each one of them. The architecture had the following features (Fig. 3):

 Input layer: 256 x 256.

 Convolution layer: 20 filters of 9x9 size Padding.

 Normalization Layer / ReLu Layer.

 maxPooling layer - grouping size 2x2.

 Convolution layer: 40 filters of 9X9 size Padding..

 Normalization Layer / ReLu Layer.

 maxPooling layer - grouping size 2x2.

 Convolution layer: 80 filters of 9x9 size Padding.

 Normalization Layer / ReLu Layer.

 Fully connected layer.

 Classification layer with softmax method for values normalization.

Once the network architecture is defined, the database is divided into the training set

(70% of the images) and the test set (30% rest) for the classification task.

Fig. 3. Convolutional Neural Network Architecture.

64

José Luis Llaguno-Roque, Rocio Erandi Barrientos-Martínez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

3 Experiments and Results

Our proposal was programmed and executed in Matlab software. The results described

in this section were designed according to two experiments

explained below.

Experiment 1. All images were considered with the three classes of the database:

healthy patients, patients with benign pathology, and patients with cancer. In the case

of the convolution kernels, the kernel sizes used were 3, 7, and 9 coefficients.

As far as the type of data is concerned, three variants were employed:Color images,

70 epochs were tested:

 Color images and 20 epochs were tested.

 Grayscale images and 20 epochs were tested.

 Grayscale images applying Fourier transform, 70 epochs were tested.

Experiment 2. 99 images were used, representing two classes in the database

corresponding to healthy and cancer patients. In the case of convolution kernels, the

kernel sizes used were 3, 7, and 9 coefficients. As far as the type of data is concerned,

three variants were used:

 Color images and 20 epochs were tested.

 Grayscale images and 20 epochs were tested.

 Grayscale images applying Fourier transform, 70 epochs were tested.

1 Significance values were evaluated using non-parametric techniques.

Table 1. Experiment 1: Classification with Convolutional Neural Networks with three classes.

Test Epochs Kernel
Classification

rate

Std dev

(-+)

P<0.05

Significant

differences

Sánchez-Silva,

Acosta-Mesa, &

Romo-González,

2018

N/A N/A 65.40% N/A N/A

Color images 20 9 68.24%
62.67% -

73.77%
0.261

Grayscale images. 20 9 66.44%
63.78% -

69.11%
0.037541

Grayscale images

applying Fourier

Transform

70 3 61.55%
54.76% -

68.34%
0.5964

65

Western Blot Pattern Classification Using Convolutional Neural Networks ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

When the test data satisfied the assumption of normality, Analysis of Variance

(ANOVA) was used to evaluate significant differences between more than

two groups.

Otherwise, the non-parametric Kruskal-Wallis test was used. Furthermore, the t-

student test was used to assess the significant differences between two groups.

On the other hand, the Mann-Whitney test was employed in case the data did not

satisfy the normality assumption. If p<0.05, the data had significant differences. Both

experiments were run ten times, calculating the average, standard deviation, and

evaluation of significant differences in the classification percentage obtained in each

run. The results are shown in Table 1 and Table 2.

Figure 4 and 5 show the better confusion matrix for both experiments, these allows

visualization of the performance of the proposal model. Each row of the matrix

represents the instance in the actual class and each column represents the instance in a

predicted class.

With this matrix is possible calculate the false negatives, false positives, true

negative and true positives values. This allows more detailed analysis than simply

observing the proportion of correct classifications (accuracy).

4 Discussion

As show in the tables, we have the comparative results obtained by testing the

convolutional neural network with proposed parameters, color spaces in the image, and

applying the Fourier transform in the grayscale images.

The best classification rate for the three classes (healthy, benign breast pathology,

and breast cancer) was 68.24% in color images (62.67% - 73.77%) and a p=0.26

significant difference.

The best classification rate for two classes (healthy, breast cancer) was 86.00% in

grayscale images applying Fourier transform (81.90% - 90.09%) with a p=0.351

significant difference. For the experiments conducted, we could conclude that

exhaustive processing that uses a lot of time and resources is unnecessary, since from

2 Significance values were evaluated using non-parametric techniques.

Table 2. Experiment 2: Classification with Convolutional Neural Networks with two classes.

Test Epochs Kernel
Classification

rate

Std. dev

(-+)

P<0.05 Significant

differences

Sánchez-Silva, Acosta-Mesa,

& Romo-González, 2018
N/A N/A 86.06% N/A N/A

Color images 20 3 81.99%
77.50% -

86.96%
0.22232

Grayscale images. 20 7 82.33%
74.95% -

89.71%
0.50972

Grayscale images applying

Fourier Transform
70 3 86.00%

81.90% -

90.09%
0.351

66

José Luis Llaguno-Roque, Rocio Erandi Barrientos-Martínez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

epoch 20 with color and grayscale images, or in epoch 70 with images applying the

Fourier transform, the classification rate remains constant.

Thus, we can conclude image processing performed with convolutional neural

networks reduces time and subjectivity compared to those analyses a proteomics

specialist would perform with these images.

Our proposal directly classifies the bands of Western blot images of antigen-reactive

autoantibodies (tumor line T47D - ductal carcinoma) without a preprocessing stage

(delimiting an area to obtain time series).

These results guide us to continue experimenting on how convolutional neural

networks allow us to get a better classification rate. On the other hand, artificial

intelligence is applied as a support tool to diagnose breast cancer before it manifests

itself, leading to better prevention, diagnosis, and treatment of breast cancer.

References

1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.:

Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality

Worldwide for 36 Cancers in 185 Countries CA: A Cancer Journal for Clinicians, vol. 71,

no. 3, pp. 209–249 (2021). DOI: 10.3322/caac.21660.

Fig. 4. Confusion Matrix of the Convolutional Neural Networks with three classes.

Fig. 5. Confusion Matrix of the Convolutional Neural Networks with two classes.

67

Western Blot Pattern Classification Using Convolutional Neural Networks ...

Research in Computing Science 152(5), 2023ISSN 1870-4069

2. Hernández-Nájera, O., Cahuana-Hurtado, L., Ávila-Burgos, L.: Costos de atención del

cáncer de mama en el Instituto de Seguridad y Servicios Sociales de los Trabajadores del

Estado, México. Salud Pública de México, vol. 63, no. 4, pp. 538–546 (2021). DOI: 10.21

149/12332.

3. Brandan, M.E., Villaseñor, Y.: Detección del cáncer de mama: Estado de la mamografía en

México. Cancerología, vol. 1, no 3, pp. 147–162 (2006)

4. Chapman, C., Murray, A., Chakrabarti, J., Thorpe, A., Woolston, C., Sahin, U., Barnes, A.,

Robertson, J.: Autoantibodies in Breast Cancer: Their Use as an Aid to Early Diagnosis.

Annals of Oncology, vol. 18, no. 5, pp. 868–873 (2007). DOI: 10.1093/annonc/mdm007.

5. Desmetz, C., Bascoul-Mollevi, C., Rochaix, P., Lamy, P.J., Kramar, A., Rouanet, P.,

Maudelonde, T., Mangé, A., Solassol, J.: Identification of a New Panel of Serum

Autoantibodies Associated with the Presence of in Situ Carcinoma of the Breast in Younger

Women. Clinical Cancer Research, vol. 15, no. 14, pp. 4733–4741 (2009). DOI: 10.1158/10

78-0432.CCR-08-3307.

6. Romo-González, T., Esquivel-Velázquez, M., Ostoa-Saloma, P., Lara, C., Zentella, A.,

León-Díaz, R., Lamoyi, E., Larralde, C.: The Network of Antigen-antibody Reactions in

Adult Women with Breast Cancer or Benign Breast Pathology or Without Breast Pathology.

Plos One, vol. 10, no. 3, pp. e0119014 (2015). DOI: 10.1371/journal.pone.0119014.

7. Sánchez-Silva, D.M., Acosta-Mesa, H.G., Romo-González, T.: Semi-Automatic Analysis

for Unidimensional Immunoblot Images to Discriminate Breast Cancer Cases Using Time

Series Sata Mining. International Journal of Pattern Recognition and Artificial Intelligence,

vol. 32, no. 01, pp. 1860004 (2018). DOI: 10.1142/S0218001418600042.

68

José Luis Llaguno-Roque, Rocio Erandi Barrientos-Martínez, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Spiking Neural Networks Codification
Using Bio-Inspired Computation

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa, Efrén Mezura-Montes

Universidad de Veracruz,
Instituto de Investigación en Inteligencia Artificial,

Mexico

carlosalberto.lopezherrera91@gmail.com,

{heacosta,emezura}@uv.mx

Abstract. In Spiking Neural Networks, the codification of analog signals
constitutes a primordial pre-processing step. Hereof, Ben’s spiker algorithm,
as a temporal coding schemes, is one of the most recently used methods.
Nevertheless, having optimal parameters is of great importance. In this paper,
the performances of two evolutionary algorithms and one swarm intelligence
algorithm are contrasted in said optimization task. Moreover, a comparison
against a Grid Search implementation is also presented. Our findings showed
that Differential Evolution outperformed its counterparts. Furthermore, it is
also proved that the same transformation capabilities, as the Grid Search, are
being reached.

Keywords: Ben’s spiker algorithm, differential evolution, particle, swarm
optimization, genetic algorithm, grid search.

1 Introduction

Spiking Neural Networks (SNNs), the third generation of Artificial Neural Networks
(ANN), were introduced as a more biologically realistic approximation [1] regarding
how information is spread, compared to past generations. In the brain, the interaction
between neurons is done by transmitting action potentials (or spike trains) to other
nearby neurons [2].

Since all real-world signals are characterized as analog and temporal, it becomes
indispensable to implement a technique capable of transforming them into spike trains
and preserve as much information as possible in order to harness the usage of SNNs.

These encoding methods are often divided into two approaches: Rate and Temporal
coding schemes [3]. The Rate coding strategy focuses on how information is encoded
(count, density or population rate) [3, 4].

On the other hand, Temporal coding methods encode signals based on the timing
of significant events [5, 6]. Furthermore, it has been noted that rate coding suffers
from wide periods of latency between spikes, which may not be suitable for some
SNNs applications [4]. For that reason, temporal encoding has been used in more
recent works [4].

69

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 69–76; rec. 2022-08-19; acc. 2022-10-12

Algorithm 1 BSA encoding
1: input: S signal, FIR filter, threshold
2: L← length(S), F ← length(FIR), Out← zeros(L), Shift← min(S)
3: S ← S − Shift
4: for t = 1 : (L− F) do
5: E1← 0, E2← 0
6: for k = 1 : F do
7: E1← E1 + abs(S(t+ k)− FIR(k)), E2← E2 + abs(S(t+ k − 1))

8: if E1 ≤ (E2 ∗ threshold) then
9: Out(t) = 1

10: for k = 1 : F do
11: S(t+ k + 1)← S(t+ k + 1)− FIR(k)

12: output: Out, Shift

Algorithm 2 BSA decoding
1: input: Spikes, FIR filter, Shift
2: L← conv(Spikes,FIR)+Shift
3: output: Out

For a more in-depth analysis for these schemes, [3] provides a comprehensive
review of the subject. Moreover, there are many temporal coding algorithms that have
been proposed: Step-Forward (SF), Threshold-Based Representation (TBR), Moving
Window (MW) and Ben’s Spiker Algorithm (BSA), to name a few [3, 7]. Primarily, the
latter has been used to encode data streams (e.g., Electroencephalography) [3, 7].

First introduced in [8], BSA is an extension of Hough Spiker Algorithm (HSA).
The core idea behind this technique is that an analog signal can be constructed using
the convolution of a spike train and a FIR filter [7, 9]. Hence, BSA uses a suitable filter
to produce a spike train based on the comparison of two errors.

The first one involves the sum of differences between the signal and the filter.
The second one represents the aggregated value of the signal; a spike is produced
whenever the first error is smaller than the weighted (by a threshold) second
error [5] (Algorithm 1).

Consequently, the BSA decoding is achieved by the convolution of the encoded
spike train signal and the FIR filter (Algorithm 2). Thus, it is evident that the
composition of the FIR filter and the threshold value are of great importance.
The configuration of this filter relies on two main parameters: Filter size and
Cutoff frequency.

In this preliminary proof of concept, two main goals are pursued: To compare
the performance of two well known evolutionary algorithms (EA) and one swarm
intelligence algorithm (SI) for the optimization of the BSA parameters (Filter size,
cutoff frequency and threshold) and to contrast the best performing EA or SI against
a Grid Search (GS).

Moreover, the reason to choose GS as a comparative method is not only because
it is a deterministic technique, but also because it was used in [7] as a optimization
technique. In order to measure the BSA efficiency, three metrics criteria will be used:

70

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa, Efrén Mezura-Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 1. All signals created with a length of 1001 elements and sampled at 1000 Hz.

Table 1. Range for each variable as established in [7].

Variable Range Increment
Filter size 17 - 81 4
Cutoff frequency 20 - 80 2
Threshold 0.8 - 1.1 0.01

– Signal to Noise Ratio (SNR): Measures the relation involving the original signal
power and the noise signal power. Noise is considered as the difference between the
original signal (s) and the decoded signal (r). Higher SNR values mean better results.
It is defined as:

SNR = 10 · log10

N∑
t

s2t

N∑
t

(st − rt)2

 . (1)

– Absolute Firing Rate (AFR): Indicates the saturation of the spike train (sp). Lower
AFR values mean a less saturated signal. It is defined as:

AFR =

N∑
t

|spt|

N
. (2)

– Symmetric Mean Absolute Percentage Error (sMAPE): A percentage error that
measures accuracy between the original signal and the reconstructed one [10], [11].
Unlike SNR, this metric considers both, the original signal (s) and the reconstructed
signal (r) as independent from each other. Lower sMAPE values mean better results.
It is defined as:

sMAPE =
1

N

N∑
t=1

|rt − st|
|rt|+ |st|

· 100%. (3)

71

Spiking Neural Networks Codification Using Bio-Inspired Computation

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 2. Parameter values used for each EA and SI algorithm. These values were selected by a
trial-and-error process.

(a) GA
Version Canonical (Real representation)

Population 50
Crossover SBX(η+10 - 90%
Mutation Uniform - 60%

Parent selection Probabilistic binary tournament - 60%
Elitism 1

Boundary management Ran[13]
Generations 200

(b) DE
Version DE/rand/1/bin

Representation Real
NP 50
Cr 0.8
F 0.5

Boundary management Ran[13]
Generations 200

(c) PSO
Version Global-best PSO

Representation Real
Cumulus size 50

W 0.65
C1 1.2
C2 1.4

Boundary management Ran&RaB[14]
Generations 200

Table 3. Statistical results of 30 independent executions. Values in boldface indicate the best
value. H=1 means that a significant difference was found.

Statistic GA DE/rand/1/bin Global-best PSO
Friedman test
p-value H

Best 10.7257 10.7826 10.7825

2.46E-13 1
Mean 10.6966 10.7726 10.7294

Median 10.7024 10.7825 10.7250
Worst 10.6349 10.7310 10.5168

Std Dev 0.0206 0.0151 0.0497

The rest of this paper is structured as follows: In Section 2, the methodology for two
experiments to be conducted is explained. Section 3 describes the experiments layout,
as well as the corresponding results. In Section 4, a general discussion is made of the
achieved results and the evidence observed. Section 5 consists of some conclusions
attained as well as ideas for future work.

2 Methodology

Using the implementation of [7], eleven signals were created (Fig. 1). These are
produced by a composition of sine signals ranging from 2 to 30 Hz with random power
and random phase lags. Also, white noise was added with a strength of 3. All signals
have a length of 1001 elements, sampled at 1000 Hz.

The first experiment consists in comparing performances for the optimization of the
BSA parameters. Two commonly used EA are considered. Namely, Genetic Algorithm
(GA) and Differential Evolution (DE). Also, a SI algorithm called Particle Swarm
Optimization (PSO) is tested as well. Since SNR is highly recommended [6, 7, 12],
this metric was used as the objective function for the three compared approaches. The
first signal (Fig. 1a) was utilized.

In the second experiment, the optimization method1 proposed in [7], where a GS is
employed to find the optimal set of parameters, was applied to each remaining signal
(Fig. 1b - 1k). After that, the best performing EA or SI from the previous experiment
was used to the same task on the same signals.

This test aims at proving the transformation capabilities of an EA or SI against a
deterministic and proved method. The GS ranges of each variable are shown in Table 1.
Moreover, the parameters for each bio-inspired algorithm are presented in Table 2.

1 github.com/KEDRI-AUT/snn-encoder-tools

72

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa, Efrén Mezura-Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Table 4. Details of the median run, by each algorithm. a) Metrics comparing the results of
the algorithms. Values in boldface indicate a better result. b) Set of parameters found by
each algorithm.

(a) Metrics achieved
GA DE/rand/1/bin Global-best PSO

SNR 10.7024 10.7825 10.7250
sMAPE 13.6305 13.2633 13.5431

AFR 0.3337 0.3357 0.3337

(b) Parameters found
GA DE/rand/1/bin Global-best PSO

Filter size 71 69 71
Cutoff frequency 49.7601 38.8649 49.1676

Threshold 0.9563 0.9572 0.9564

Fig. 2. Graphical results obtained. a) Convergence graph of the median execution by each
algorithm. b) Visual comparison between the original signal and the reconstructed signals using
the parameters found at the best execution.

3 Experiments and Results

3.1 Experiment 1

The focus of this experiment is to compare the performances of two common EA and
one SI algorithm for the optimization of the BSA parameters on a given signal. To
achieve this, 30 independent executions were performed per compared algorithm using
the first signal (Fig. 1a). The same ranges of the variables (Table 1) were acknowledged
in each algorithm implementation.

In Table 3, the statistical analysis of SNR values (objective function) obtained in all
executions and the Friedman test results (95%-confidence) are presented. Furthermore,
in Table 4 the details of the algorithms median run are shown. Table 4a refers to the
metrics, whereas Table 4b presents the parameters found. Finally, the convergence
graphs of the three algorithms are presented in Figure 2a. Also, Fig. 2b includes
the contrast between the original signal and the reconstructed signal by the three
compared algorithms.

From these results, it is noticeable that DE/rand/1/bin outperformed both, GA and
Global-best PSO. This is also validated by the Friedman test (Table 3). Furthermore,
all parameters found are quite similar. On this regard, DE/rand/1/bin managed to get a
better result using a lower filter size (Table 4).

Additionally, all algorithms showed a similar convergence dynamic (Fig. 2a): the
exploration seems to decrease rapidly. Similarly, Fig. 2b shows that the reconstructed
signals do not exhibit mayor differences among the algorithms implementations despite
the variations observed by metrics.

73

Spiking Neural Networks Codification Using Bio-Inspired Computation

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 5. Detail of Wilcoxon rank-sum results based on SNR metric. H=0 means no significant
difference was found.

Statistic GS DE/rand/1/bin
Friedman test
p-value H

Mean 9.1896 9.4786
0.2730 0

Std Dev 0.9367 0.9811

Fig. 3. Visual comparison between signal reconstruction from GS and DE for signal 2.

3.2 Experiment 2

The main goal of this experiment is to test the best performing bio-inspired algorithm
out of the previous experiment against the implementation in [7] on ten different signals
(Fig. 1b - 1k). Considering the fact that DE showed the best performance, it was selected
for this experiment.

The parameters from the previous implementation were kept (Table 2b). In order to
contrast the overall performance of GS and DE, Table 5 shows the statistical values
obtained from SNR metrics of all signals, as well as the results of the Wilcoxon
rank-sum test (95%-confidence).

Finally, a representative visual comparison of all tested methods on signal 2 (Fig.
1b) is presented in Fig. 3. From Table 5, it can be establish that no significant differences
were found between GS and DE. This is also supported by the visual comparison
highlighted in Fig. 3, where no mayor differences are visible.

4 Discussion

Firstly, experiment 1 shows that DE/rand/1/bin exhibited a better performance over the
other algorithms tested (Table 3). Moreover, DE was able to lower the filter size variable
the most. This is of great importance since BSA involves the deconvolution/convolution
of a signal by the FIR filter. Hence, the smaller the filter size, the lower the cost and
computational time.

74

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa, Efrén Mezura-Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Nevertheless, the quantitative improvements observed where not greatly reflected
during visual comparison (Fig. 2b). Also, it seems that all bio-inspired algorithms
converge fairly quick (Fig. 2a). Therefore, more efforts could be made in order to
improve the explorations.

Finally, experiment 2 presents a direct contrast between GS and DE
implementations applied to ten different signals. From there, the observations of GS and
DE showed no significant differences overall (Table 5). This is also reaffirmed by the
visual comparison performed between the reconstructed signal of GS and DE against
the original signal. This evidence points to the ability of DE to match the performance
of a GS with fixed ranges.

5 Conclusions and Future Work

SNNs models represent a paradigm shift from its predecessors; the key differentiation
lies in how information is conveyed. Since SNNs use spike trains, a crucial question to
be asked is: How can we translate analog signals to an impulse-based representation?
In this paper, BSA was chosen as a method to transform analog signals to spike trains.

We tested two evolutionary algorithms and one swarm intelligence algorithm
to optimize parameters for the already mentioned technique. It was found that
DE/rand/1/bin performed better than its counterparts. Yet, results did not significantly
improve the transformation capabilities.

On the other hand, the second experiment compared results between DE and the
implementation in [7]. In such reference, a GS was used to find optimal parameters.
Nevertheless, this method restricts the search space in order to lower the computational
cost and time.

This also implies a certain prior knowledge in order to narrow the variables. In
contrast, the DE implementation did not required any increment restriction. Having
said that, our findings showed that DE could be considered as a optimizer of BSA
parameters. Finally, future work directions could include different paths:

1. Perform experiments with more specialized, bio-inspired algorithms.
2. Implement a parameter tuning method in the algorithms calibration.
3. Evaluate the use of surrogate models for signal transformation.
4. Asses the possibility of a bio-inspired algorithm optimization using the classification

performance of a generic SNN as objective function.

Acknowledgments. The first author acknowledges support from Consejo Nacional de
Ciencia y Tecnologı́a (CONACyT), Mexico through scholarship No. 1075919 to pursue
graduate studies at University of Veracruz.

References

1. Maass, W.: Networks of spiking neurons: The Third Generation of Neural
Network Models. Neural Networks, vol. 10, no. 9, pp. 1659–1671 (1997). DOI:
10.1016/s0893-6080(97)00011-7.

75

Spiking Neural Networks Codification Using Bio-Inspired Computation

Research in Computing Science 152(5), 2023ISSN 1870-4069

2. Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., Maida, A.: Deep
Learning in Spiking Neural Networks. Neural Networks, vol. 111, pp. 47–63 (2019). DOI:
10.1016/j.neunet.2018.12.002.

3. Auge, D., Hille, J., Mueller, E., Knoll, A.: A Survey of Encoding Techniques for Signal
Processing in Spiking Neural Networks. Neural Processing Letters, vol. 53, no. 6, pp. 1–18
(2021). DOI: 10.1007/s11063-021-10562-2.

4. Kasabov, N.: Evolving Spiking Neural Networks for Spatio-and Spectro-temporal Pattern
Recognition. International Conference Intelligent Systems (2012). DOI: 10.1109/is.
2012.6335110.

5. Dupeyroux, J., Stroobants, S., de-Croon, G.: A Toolbox for Neuromorphic Sensing in
Robotics (2021) DOI: 10.1109/EBCCSP56922.2022.9845664.

6. Tan, C., Šarlija, M., Kasabov, N.: Spiking Neural Networks: Background, Recent
Development and the neuCube Architecture. Neural Processing Letters, vol. 52, no. 2, pp.
1675–1701 (2020). DOI: 10.1007/s11063-020-10322-8.

7. Petro, B., Kasabov, N., Kiss, R. M.: Selection and Optimization of Temporal Spike Encoding
Methods for Spiking Neural Networks. IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 2, pp. 358–370 (2020). DOI: 10.1109/tnnls.2019.2906158.

8. Schrauwen, B., Van Campenhout, I.: BSA, a Fast and Accurate Spike Train Encoding
Scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol.
4, pp. 2825–2830 (2003). DOI: 10.1109/ijcnn.2003.1224019.

9. Moinnereau, M. A., Brienne, T., Brodeur, S., Rouat, J., Whittingstall, K., Plourde, E.:
Classification of Auditory Stimuli from EEG Signals with a Regulated Recurrent Neural
Network Reservoir (2018). DOI: 10.48550/ARXIV.1804.10322.

10. Armstrong, J. S., Forecasting, L. R.: From Crystal Ball to Computer. vol. 348 (1985)
11. Hyndman, R. J., Athanasopoulos, G.: Forecasting: Principles and Practice, o texts:

Melbourne, 2nd edition (2018)
12. Sengupta, N., Kasabov, N.: Spike-time Encoding as a Data Compression Technique for

Pattern Recognition of Temporal Data. Information Sciences, vol. 406–407, pp. 133–145
(2017). DOI: 10.1016/j.ins.2017.04.017.

13. Lampinen, J.: A Constraint Handling Approach for the Differential Evolution Algorithm. In:
Proceedings of the Congress on Evolutionary Computation, vol 2, pp. 1468–1473 (2002).
DOI: 10.1109/cec.2002.1004459.

14. Clerc, M.: Confinements and Biases in Particle Swarm Optimization. Technical Report
hal-00122799 (2006)

76

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa, Efrén Mezura-Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Sentiment Analysis Using Convolutional Neural
Networks Generated by Neuroevolution

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos,
Guillermo de Jesús Hoyos-Rivera , Efrén Mezura-Montes

Universidad de Veracruz,
Instituto de Investigaciones en Inteligencia Artificial,

México

{maquiroz,ghoyos,emezura}@uv.mx,
jclementehdzhdz@gmail.com

Abstract. Sentiment analysis is a sub-field of Natural Language Processing
which is focused on determine what is the sentiment expressed in an opinion.
In this paper we propose a new neuroevolution algorithm, called Deep
NeuroEvolution of Weights and Topologies (DeepNEWT), which is based on
a genetic algorithm and is used to evolve convolutional neural networks, to
classify text in different polarity sentiments. The proposed algorithm, instead
of using backpropagation on several epochs as training mechanism, as other
proposals do, implements a plain mutation process adding random values to the
current weights and bias. Moreover, the algorithm searches, through mutation and
crossover operators, the best topology structure of the networks during a number
of generations. This was executed using text data transformed with Word2Vec.
The obtained results when varying the number of parents chosen for crossover
and different mutation rates are encouraging.

Keywords: Neuroevolution, sentiment snalysis, evolutionary computing,
neural networks.

1 Introduction

Sentiment Analysis (SA) is the field of study of the Natural Language Processing
(NLP) which explores text data to detect the expressed sentiment [7]. There are
several research works in SA, which focus on detecting the sentiment on text using
Machine Learning (ML) [13], and, in recent years, due to the incorporation of Deep
Learning (DL), Convolutional Neural Networks (CNN) have been used to improve the
performance over the traditional ML classifiers [16].

Usually, the creation of a CNN architecture is handcrafted, but tuning them is not
an easy task. For this reason, in this paper we propose to use Neuroevolution (NE), a
technique that replaces the architecture engineering, doing this process automatically
trough Evolutionary Computing (EC) algorithms [11]. The proposed approach is a
Genetic Algorithm (GA), which combines interesting features of previous works in
the field of Computer Vision (CV) [14].

77

ISSN 1870-4069

Research in Computing Science 152(5), 2023pp. 77–84; rec. 2022-08-19; acc. 2022-10-12

Table 1. Similarity numbers and their corresponding non-linear activation function and
pooling operations.

Similarity number Non-linear function Pooling operation
1 Sigm Max
2 Sigm Avg
3 Tanh Max
4 Tanh Avg
5 ReLU Max
6 ReLU Avg
7 PReLU Max
8 PReLU Avg

To search for CNNs, and the well known NeuroEvolution of Augmenting
Topologies (NEAT) algorithm [12] to evolve fully-connected neural networks (FCNN).
Our proposal involves crossover operators to share architecture elements between
networks, and a mutation operator in a two-phase way, where new variations
of the architectures can be inserted, and weights and bias are trained without
using backpropagation.

The proposed experiments include variations in the parameters set to analyze the
performance of the algorithm. Opinions used to test the algorithm are transformed using
a Word2Vec [8] model. The rest of this paper is organized as follows: in Section 2
previous works about SA and NE are presented, while in Section 3 the proposed
algorithm is described in detail. In Sections 4 and 5, the experimental design and the
obtained results of the proposed algorithm are shown, respectively. Finally, in Section 6
conclusions and future work are drawn.

2 Related Work

CNNs have been used to automatically extract features from images, and to do different
tasks as segmentation or classification [6]. In SA this kind of neural networks are used
to classify transformed text, as in [5], where an experimental study was carried out to
label movie reviews in different polarity sentiments, demonstrating that CNNs can be
used to tackle the SA task.

The CNN created in the previous work, was used to classify tweets written in
Spanish [9], where the text was transformed using Word2Vec model. CNNs were
handcrafted created. Concerning NE and SA, FCNNs were also used to do SA in text.
Using text written in Polish, an automatic system was created for pre-processing data
and classify text using NEAT [10].

In [4], a new representation of text was created, and then, NEAT was used to
create small versions of fully-connected neural networks to classify tweets written
in Mexican Spanish. In these two researches, only FCNNs were evolved and used
traditional techniques instead of DL approaches.

On the other hand, NE was also implemented to generate CNNs, which were used
for SA. In [3], using a NEAT-based GA, CNNs were generated to classify movie reviews
and in [1], based on a Differential Evolution algorithm, CNNs were evolved to classify
text in Arabic.

78

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 1. Element crossover in the CNP blocks; each CNP block has its respective elements: a
non-linear activation function Ni, the pooling filter and its operation Poi, and the similarity
number; they are divided by a red color line.

An interesting feature of the use of NE algorithms to evolve CNNs, is that for each
generation or iteration, a step is executed to run a number of epochs a backpropagation
algorithm. Other algorithms that were used, this time in the field of CV, are described
in [2, 14, 15].

3 Deep NeuroEvolution of Weights and Topologies

Deep NeuroEvolution of Weights and Topologies (DeepNEWT), is a GA algorithm
created to generate the architecture and weights of a CNN to classify text without
using the backpropagation algorithm. Since DeepNEWT is a GA, some elements are
introduced in its main process: (1) it uses a direct codification of potential solutions,
(2) it allows sharing and mutating elements within solutions, (3) it admits the change
of activation functions and pooling operations, (4) it searches layer similarities between
solutions, (5) it trains connection weights and bias through a simple addition of random
values without using backpropagation, and (6) it allows to use the CNN created in [5].

DeepNEWT uses a block-chained direct encoding, where convolutional, non-linear
activation function, pooling, and fully-connected layers are reserved. A potential
solution has three different blocks: (1) a convolutional, non-linear activation function,
and pooling, called CNP, (2) a convolutional layer extracted from [5], called last-CNP
layer, and (3) a fully-connected layer, called FC. DeepNEWT individuals are created
randomly subject to certain parameters.

Each CNP block has z × z′ convolutional filters and each filter has a length of
v×w, z is the number of input channels and z′ is the number of feature maps or output
channels. The CNP block also has a non-linear activation function, a pooling operation
with its respective filter with dimensions s × t and a similarity number. A potential
solution of a CNN can have n CNP blocks located one after another. A CNP block
generates an output of n′′ ×m′′ × z′ given an input of n×m× z.

Based on the historical markings in [12] and the crossover operator in [14], a novel
element is introduced in this algorithm: the ease of sharing elements between solutions
through similarities of the CNP blocks. A similarity number is given by the union of a
non-linear activation function and a pooling operation. The similarity numbers in each
combination of functions are shown in Table 1.

79

Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 2. Mutation processes with their corresponding sequential number (S.), and their moment;
symbol +/- means that an element will reduce or increment its size or length.

CNP last-CNP
Mutation Moment S. (1st, 2nd) Moment S. (1st, 2nd) Type

No. of conv. Filters - - Both 1 +/- 1
No. of output feature maps Both 2 Both 2 +/- random

Activation function Both 3, 6 Both 3, 6 Random
Conv. Filters length Both 4, 7 Both 4, 7 +/- 1

W , b values Both 5, 8 Both 5, 8 Random sum
No. of CNP blocks 2nd 3 - - +/- 1
Pooling operation 2nd 4 2nd 4 Random

Pooling filter length. 2nd 5 - - +/- 1

The so-called last-CNP layer, located after n CNP blocks, has different
convolutional filters lengths of size vi × w, where w = m′′, which is a value
corresponding to an output generated by a CNP block or the input to the CNN. The
last-CNP layer, given a convolutional filter fi, generates an output of dimensions
n′ × 1 × z′. Later, a non-linear activation function is computed, and then a pooling
operation is also executed with its respective pooling filter.

A pooling filter pi in the last-CNP has dimensions n′×1, and the pooling operation
is computed z′ times over the convolutional operation output. The pooling operation
generates an output of 1 × 1 × z′ size. The final output of a last-CNP layer is a
concatenated list of values of the pooling filters pi.

The last element of the CNNs is a FC layer, located after the last-CNP. This layer
has |pi|z′ number of input neurons and, for this research work, 3 output neurons
corresponding to the polarity sentiments: negative, neutral and positive. Before the
algorithm executes crossover and mutation operators, a deterministic tournament is
carried out in the current population P . It selects l individuals without replacement,
in which, only the best individual becomes a part of a set Ps for crossover.

Such a process is done T times. After computing the DeepNEWT crossover
operator, a set Pc is created with the recombined individuals. Three crossover processes
are computed: (1) with CNP blocks, (2) in the last-CNP layer, and (3) in the FC layer.
Crossover is applied to two parents, P1 and P2, to generate two offspring, H1 and H2.
The similarity numbers of two parent solutions P1 and P2 are considered in the CNP
blocks crossover process.

To compute it, first the same similarity numbers of the CNP blocks in both
individuals must be identified. If there is more than one occurrence of the same
similarity number in an individual, a CNP block is selected randomly. When the
similarity numbers are detected, only the pooling filter and operation is changed with
the other parent where the similarity number matches. The procedure of the CNP blocks
crossover process is shown in Figure 1.

With respect to the last-CNP crossover operator, only the pooling operator, without
the filter, is shared and, in the FC layer crossover, the non-linear activation function
is transferred. A novel mechanism is introduced in the mutation operator, where two
sequentially executed moments are involved.

80

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Algorithm 1: Deep NeuroEvolution of Weights and Topologies
Data: Continue and discrete parameter limits
Result: Best CNN
Initialize N CNN in the population P ;
Initialize ϕa and ϕb;
Compute CNN fitness;
while max generations not reached do

Ps ← select T elements from P by tournament;
Pc ← crossover elements from Ps ;
Pa ← mutate individuals from Pc with probability ϕa and Ma set;
Pb ← mutate individuals from Pa with probability ϕb and Mb set ;
P t+1 ← best individuals from P t ∪ Pc ∪ Pa ∪ Pb are the population of the new generation;

end

Both moments have a set, Ma and Mb, respectively, of mutations that may be run
with probability ϕa, for the first moment, and, with a probability ϕb, for the second
moment, subject to 0 < ϕb < ϕa < 1. The individuals from Pc set can be subject to
modifications (1) at both moments, (2) only at the first moment, or (3) none of them. If
an individual is modified at the first moment, the solution is now part of the Pa set, and
such solutions can be modified in the second moment.

On the other hand, if a solution from Pa is modified at the second moment, the
solution becomes part of the Pb set, with the rest of solutions modified at the second
moment. A mutation modification has a sequential number, and it indicates when the
modification will be executed. A moment is a set of mutations that modify solutions in a
sequential way. A modification mi from a set M , as mentioned above, has a probability
ϕ of happening, depending on the execution moment.

If an individual is modified at mi, the resulting individual from this modification
can be modified again at the next mutation mi+1, and so on. When an individual is
modified at a mutation moment, the set Pa or Pb gets an individual after such moment.
The modifications by mutation in the CNP blocks and last-CNP layer, including the
weights W and bias b updating, are shown in Table 2. With respect to the FC layer, only
the weights W , and bias b, can be modified by the mutation mechanisms.

It is important to mention that all modifications which include random variations or
values, are carried out using an either, discrete or continue, random uniform distribution.
Finally, the generation of a new population, P t+1, is done by the union that involves the
current population, P t, the individuals after crossover, Pc, and the modified individuals
in the first and second moments, Pa and Pb. After this union P t ∪ Pc ∪ Pa ∪ Pb, only
the best individuals are selected to be part of the new population, P t+1. The complete
process of DeepNEWT is described in Algorithm 1.

4 Experimental Settings

Tweets used in this research work were manually labelled in three different polarity
sentiments: positive, negative and neutral and all classes are balanced. The total of
tweets is 150 and they belong to the Mexican political context. All tweets were
transformed using a Word2Vec model trained from scratch. The model was trained with
the Gensim 3.8 Python library1.

1 radimrehurek.com/gensim/

81

Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

Research in Computing Science 152(5), 2023ISSN 1870-4069

Table 3. Experiment parameters and their respective final accuracy results.

Exp. T ϕa ϕb Accuracy Exp. T ϕa ϕb Accuracy Exp. T ϕa ϕb Accuracy

A1 6 0.2 0.1 0.4733 B1 12 0.2 0.1 0.5067 C1 18 0.2 0.1 0.4867

A2 6 0.4 0.1 0.4933 B2 12 0.4 0.1 0.4733 C2 18 0.4 0.1 0.5133

A3 6 0.4 0.2 0.4667 B3 12 0.4 0.2 0.4733 C3 18 0.4 0.2 0.52

A4 6 0.6 0.1 0.48 B4 12 0.6 0.1 0.4667 C4 18 0.6 0.1 0.5067

A5 6 0.6 0.2 0.4667 B5 12 0.6 0.2 0.4867 C5 18 0.6 0.2 0.5067

A6 6 0.6 0.4 0.4933 B6 12 0.6 0.4 0.4533 C6 18 0.6 0.4 0.4733

Each word is given as input at the Word2Vec model, being the output a vector with
continuous values. This vector has a dimensionality of 60 elements and all word vector
were trained with C-BOW. Vector words of tweets are allocated in the center of a matrix
according to the row axis. The matrix is padded with zeroes if necessary. A 60 × 60
matrix is the generated continuous representation of a tweet.

Different experiments were conducted to test the DeepNEWT performance for SA
in tweets by using different number of selected parents for crossover T and different
mutation probability values, ϕa and ϕb, for both moments, respectively. Selected values
of the parameters are set to visualize the performance difference of the algorithm. A
single run per configuration was carried out.

This is because of the computational cost required by each run (about 12 hours
using 10,000 tweets). As default parameters, 100 generations and 20 individuals were
set to run the experiments. The solutions in DeepNEWT have parameter limits that
are necessary to consider. The number of CNP blocks is between [0, 5], the number of
output channels in CNP blocks and last-CNP layers is between [10, 50] and the size of
the convolutional and pooling filters is between [3, 6]. Fitness function of the algorithm
is the accuracy of the data set transformed with Word2Vec.

5 Results and Discussion

Table 3 includes the obtained results with their associated parameters. Figure 2 has the
convergence plot for each experiment (A, B and C), adding an average convergence
plot. With respect to the achieved accuracy, in the experiments with 18 selected parents
(C experiments), in 4 out of 6 experiments reached more than 50% accuracy; the highest
obtained accuracy is 52% with ϕa = 40% and ϕb = 20%.

All the experiments with 6 selected parents (A experiments), do not exceed 50%
accuracy, but the average convergence plot (Figure 6) indicates that the experiments
with 6 selected parents are better than those experiments with 12 selected parents (B
experiments). The experiments with 12 selected parents have a slower convergence with
respect to the shown by those experiments with 6 and 18 selected parents.

On the other hand, in the 18 selected parents experiments, the algorithm produces,
with respect to the average convergence, better accuracy than all other experiments. In
three cases (experiments C2, C3 and C5) the convergence was better so as to reach an
accuracy higher than 50% after 80 generations.

82

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

Fig. 2. Accuracy convergence with different number of selected parents.

As a conclusion of the experiments, DeepNEWT benefits the most when the number
of selected parents for crossover increases, particularly with mutation values located at
the middle of the ranges tested (i.e., 0.4 and 0.2 for each mutation considered).

6 Conclusions and Future Work

In this research work we proposed a NE algorithm based on a GA, that includes
a mutation mechanism to update the weights and bias of CNNs without using
backpropagation. The algorithm achieved an accuracy of 50%, using a database
transformed with Word2Vec, for a number of generations, combining different
numbers of selected parents and mutation probability values. The proposed algorithm
particularly improved its performance with larger sets of parents selected for crossover
and mutation values around 0.4 and 0.2.

The future work includes: (1) running more experiments with different number of
selected parents and also with more probability values, (2) performing experiments
without considering the 0 < ϕb < ϕa < 1 condition, (3) considering the CNN
parameter number besides accuracy, to also search for the simplest structure, (4)
running experiments using another pre-processing technique such as BERT, and (5)
implementing other kinds of mutation over the weights and bias.

Acknowledgments. The first author thanks the National Council of Science and
Technology (CONACyT), for supporting him through a scholarship to carry out his
MSc studies at Universidad Veracruzana.

83

Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

Research in Computing Science 152(5), 2023ISSN 1870-4069

References

1. Dahou, A., Elaziz, M. A., Zhou, J., Xiong, S.: Arabic Sentiment Classification Using
Convolutional Neural Network and Differential Evolution Algorithm. Computational
Intelligence and Neuroscience, vol. 2019, pp. 1–16 (2019). DOI: 10.1155/2019/2537689.

2. Desell, T.: Accelerating the Evolution of Convolutional Neural Networks with Node-level
Mutations and Epigenetic Weight Initialization. In: Genetic and Evolutionary Computation
Conference Companion, pp. 157–158 (2018). DOI: 10.1145/3205651.3205792.

3. Dufourq, E., Bassett, B. A.: EDEN: Evolutionary Deep Networks for Efficient Machine
Learning. In: Pattern Recognition Association of South Africa and Robotics and
Mechatronics International Conference, vol. 2018, pp. 110–115 (2017). DOI: 10.1109/Ro
boMech.2017.8261132.

4. Hernández, J. C. H., Montes, E. M., Hoyos-Rivera, G. J., Rodrı́guez-López, O.:
Neuroevolution for Sentiment Analysis in Tweets Written in Mexican Spanish. In: Lecture
Notes in Computer Science, pp. 101–110 (2021). DOI: 10.1007/978-3-030-77004-4 10.

5. Kim, Y.: Convolutional Neural Networks for Sentence Classification. In: Conference on
Empirical Methods in Natural Language Processing, pp. 1746–1751 (2014). DOI: 10.3115/
v1/d14-1181.

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature, vol. 521, no. 7553, pp. 436–444
(2015). DOI: 10.1038/nature14539.

7. Liu, B.: Sentiment Analysis and Opinion Mining (2012). DOI:
10.2200/S00416ED1V01Y201 204HLT016.

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed Representations
Ofwords and Phrases and Their Compositionality. Advances in Neural Information
Processing Systems, pp. 1–9 (2013)

9. Paredes-Valverde, M. A., Colomo-Palacios, R., Salas-Zárate, M. D. P., Valencia-Garcı́a, R.:
Sentiment Analysis in Spanish for Improvement of Products and Services: A deep learning
approach. Scientific Programming, vol. 2017 (2017). DOI: 10.1155/2017/1329281.

10. Sobkowicz, A.: Automatic Sentiment Analysis in Polish Language. Machine Intelligence
and Big Data in Industry, pp. 3–10 (2016).

11. Stanley, K. O., Clune, J., Lehman, J., Miikkulainen, R.: Designing Neural Networks Through
Neuroevolution. Nature Machine Intelligence, vol. 1, no. 1, pp. 24–35 (2019). DOI: 10.1038/
s42256-018-0006-z.

12. Stanley, K. O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting
Topologies. Evolutionary Computation, vol. 10, no. 2, pp. 99–127 (2002). DOI:
10.1162/10636560232016 9811.

13. Sun, S., Luo, C., Chen, J.: A Review of Natural Language Processing Techniques
for Opinion Mining Systems. Information Fusion, vol. 36, pp. 10–25 (2017). DOI:
10.1016/j.inffus.2016.1 0.004.

14. Sun, Y., Xue, B., Zhang, M., Yen, G. G.: Evolving Deep Convolutional Neural Networks for
Image Classification. IEEE Transactions on Evolutionary Computation, vol. 24, no. 2, pp.
394–407 (2020). DOI: 10.1109/TEVC.2019.2916183.

15. Xie, L., Yuille, A.: Genetic CNN. In: IEEE International Conference on Computer Vision,
pp. 1388–1397 (2017) doi: 10.1109/ICCV.2017.154.

16. Yadav, A., Vishwakarma, D. K.: Sentiment Analysis Using Deep Learning Architectures: A
review. Artificial Intelligence Review, vol. 53, no. 6, pp. 4335–4385 (2020) doi: 10.1007/s1
0462-019-09794-5.

84

José Clemente Hernández-Hernández, Marcela Quiroz-Castellanos, et al.

Research in Computing Science 152(5), 2023 ISSN 1870-4069

	Front matter
	Table of Contents
	HOK-Means: A Hybrid and Parallel Clustering Algorithm Oriented to Big Data
	Improving Text Representations: A Systematic Literature Review
	Induction of Convolutional Decision Trees with Differential Evolution for Image Segmentation
	Proposal of a CNN-Based Approach for Traffic Signal Detection
	Selection of a Fixed-Length Set of Biologically-Constrained Association Rules for Bacterial Vaginosis Diagnosis
	Vehicle Make and Model Recognition with Generation of New Classes Using Clustering Techniques
	Western Blot Pattern Classification Using Convolutional Neural Networks for Breast Cancer Diagnosis
	Spiking Neural Networks Codification Using Bio-Inspired Computation
	Sentiment Analysis Using Convolutional Neural Networks Generated by Neuroevolution

