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Abstract. This paper presents a study about the behavior of three variants of
the SVD algorithm in Collaborative Recommender Systems (CRS). For this, two
MovieLens DataSets are used, and five variants in each DataSet with different
degrees of randomness. Specifically, a comparison of the classic models is
presented: Funk-SVD, Regularized-SVD, and Bias-SVD. The underlying idea
is to observe that, as the degree of randomness in the data increases, the precision
of the recommendations decreases, and the hidden relationships that may exist in
the original data they get lost because of the noise. For this, we have configured
two groups of experiments: in the first group, in each execution 10, 20 and 30
Latent Factors (LFs) were considered in the three models, while in the second
group from 5 to 80 LFs were used in the regularized-SVD model. The prediction
error was minimized using the MSE (Mean Square Error) metric and the ADAM
optimizer. The results show that SVD with biases performs better, under the
conditions of these experiments, and that noise affects the hidden relationships
between the data.

Keywords: Collaborative recommendation systems, matrix factorization,
singular value decomposition, latent factors, noisy data.

1 Introduction

Due to the vigorous growth of electronic commerce today, the need for efficient
management of the Big Data generated is pressing. In the area of Recommendation
Systems (RS), applications need efficient algorithms in the use of the computational
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Fig. 1. Matrix factorization.

resources, and that offer quality recommendations, based on this, the RS filter the
information according to the user profiles, and predict the elements of interest for each
user in a personalized way. The elements can be books, websites, movies, tourist routes,
hotels, e-learning materials, e-commerce articles, to name a few [2, 20].

In Collaborative Filtering (CF) recommendations are made based on the tastes of
the active user’s neighbors [15], and the ratings are recorded in a data structure called
Ratings Matrix Mr [1, 14].

Early approaches used full Mr and faced bottlenecks due to dimensions and large
spread of data, later, more successful approaches reduce the dimensions of the data
through Matrix Factorization (MF) techniques, in whose decomposition the loss of
information is not considerable.

In linear algebra, MF consists of decomposing the matrix as a product of two or
more matrices according to a canonical form [23], in such a way that it is easier to work
with them, in [18] a pioneering investigation is presented in the use of the technique,
in which SVD is compared whith traditional filtering of memory-based CRS, and SVD
is validated. The main problems of CRS, such as data sparseness and cold start, have
been widely addressed [8, 22, 21], but little has been studied about the behavior of
algorithms with respect to biased, noisy or completely distorted data.

Addressing the problem of noisy or biased data can help generate mechanisms that
improve recommendations, when users face biases due to overexposure, and popularity,
which can confuse their preferences and give high ratings or “likes” to articles that are
not of their interest [10]. Although biases have already been addressed from different
perspectives, such as those that consider the degree of dispersion with respect to the
mean, or biases due to context or temporality.

We believe that investigating the behavior of SVD models in relation to noisy data
could help decide on their use with respect to the applications domain. In this work, the
behavior of three classic SVD algorithms is studied with respect to noisy data, for which
five DataSets were generated with a certain degree of randomness in two MovieLens
DataSets, and two groups of experiments with different number of LFs were configured.

We have mainly relied on the research reported by Koren [11] to describe the SVD
models. The rest of this work is organized as follows: Section 2 addresses the theory of
the implemented SVD models. Section 3 describes the experimental work and results.
Finally, in section 4 conclusions are made and future work is presented.
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Fig. 2. Funk-SVD.

2 Theory About the SVD Method

SVD has been used to describe data in a reduced representation of its key characteristics,
for example in megapixel image processing [5], high-resolution videos [13], natural
language processing tasks [12], and recommendation systems [1]. SVD is used in
Big Data, for example in Principal Component Analysis (PCA) to identify dominant
patterns and correlations [3].

SVD is also used by big websites like FaceBook for their friend recommendations,
Google for page ranking, Amazon and Netflix for their RS. In MF, a result of numerical
linear algebra states that every matrix A can be represented as: A = U

∑
V T , where

U and V are unitary matrices, in [16] the proof of the decomposition theorem can be
found. Now,

∑
is a non-negative diagonal matrix and is arranged in descending order

with respect to its magnitude σ1 ≥ σ2 · · · ≥ σn all positive, and the last ones can be
zero; which means that the first column of U corresponds to σ1 just like the first column
of V , and the second column of U corresponds to σ2 like the second column of V , and
so on, so this hierarchy indicates the order of importance they have in the decomposition
of A. As shown in Fig. 1 for Mr. In SVD, the physical interpretation of the columns of
U and V is intuitive, as are the values of the diagonal of

∑
.

In the context of a CRS of movies, Mr is a matrix of column vectors, which contain
the level of liking of the users who have rated the elements, each column vector contains
the “likes” of each user who has qualified the movie that represents the vector, in this
sense, the columns of U would be the eigen-movies, and they would be arranged in
order of importance with respect to their ability to describe the columns of Mr, that
is: the movie represented by the first eigenvector would be intuitively more relevant
than the movie represented by the second eigenvector, and so on. According to the
Eckart-Young theorem [4, 7], the best approximation of A is obtained by considering
only the largest k singular values and setting the smallest to zero:

An×m ≈ Un×k ×
∑
k×k

×V T
k×m. (1)
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Table 1. DataSets used in the experiments.

DataSet Ranks Us Movies Ratings Density
Small (DS1) [0.5:5] With half star increments 610 9,724.00 100,836.00 1.7%

Ratings100K (DS2) [1:5] In one star increments 943 1,682.00 100,000.00 6.3%

It is possible to simplify the SVD process by obtaining only the user and element
factors [17], decomposing the matrix

∑
into two equal matrices, as shown in Fig. 2.

In SR, the reduction of the dimensions of Mr is fast as long as the matrix is dense,
In most cases, 10% of the largest singular values and the corresponding vectors of the
matrices U and V are sufficient to represent 98% of the total elements of Mr to a
good approximation, which is done by the inner product of the vectors of the SVD
decomposition. However, the high dispersion of data is always a problem to be solved.

2.1 Model: Funk-SVD

In movie RS, Funk proposed the decomposition of Mr into the matrices U and V
considering that

∑
has been multiplied in either of them implicitly, as shown in Fig.

2, and in this way reduced the dimensions of the data [19]. Funk starts by filling the
matrices U and V randomly, and then uses ML to modify the inputs to get a good
approximation of Mr. A score of Mr can be predicted using the equation 2:

r̂u,i =

K∑
k=1

Uu,k × Vk,i, (2)

where K is the number of LFs. The error is the difference between the actual value and
the predicted value: E = Mu,i − r̂u,i, and MSE is used to calculate the total error. The
idea is that user u’s final rating on item i can be estimated by adding user u’s interest in
i on each dimension of the hidden feature k, equation 3:

E =
∑
u

∑
i

1

2
(Mu,i − r̂u,i)

2. (3)

The objective is to minimize E with respect to U and V , using some optimizer such
as Stochastic Gradient Descent (SGD). Even though Mr is very sparse, the algorithm
works because it only takes the known inputs.

2.2 Model: Regularized-SVD

In this model, taken from [11, 19], the learning of pu and qi is achieved by minimizing
the regularized quadratic error, as in the equation 4:

min
q∗,p∗

∑
(u,i)∈K

(ru,i − qti · pu)2 + λ(∥qi∥2 + ∥pu∥2), (4)

where K is the set of pairs (u, i) for which ru,i is known, the constant λ controls the
degree of regularization and is usually determined by cross-validation [11]. To minimize
the equation 4 an optimizer such as SGD is used.
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Table 2. Variants of MovieLeans DataSets.
Exp Data Description

A DataSet 1 Actual data, no change.

B DataSet 2 Random ratings on rated movies, and same frequency distribution
of ratings.

C DataSet 3 Random ratings on rated movies, and random frequency distribution
of ratings.

D DataSet 4
Random ratings on rated movies, and same frequency distribution
of ratings but with random assignment of ratings to rated movies by
each user.

E DataSet 5
Random ratings on rated movies, and random frequency distribution
of ratings, but with random assignment of ratings to movies rated by
each user.

F DataSet 6
Random ratings on rated movies, and random frequency distribution
of the ratings, but with random assignment of the ratings to the
movies in the data set.

The algorithm goes through all the ratings in the training set, calculating in each case
ru,i and its associated prediction error, as shown in the equation 5:

eu,i = ru,i − qti · pu. (5)

The parameters are then changed by a magnitude proportional to γ in the direction
opposite to the gradient. As in the equation 6:

qi ← qi + γ · (eu,i · pu − λ · qi), pu ← pu + γ · (eu,i · qi − λ · pu). (6)

There are other methods that can also be used in the ML process, such as Alternating
Least Squares (ALS), especially in implicit feedback [11].

2.3 Model: Bias-SVD

This model considers the biases [11] related to the deviation that each rating has
with respect to the averages of the active user and element, and is compared with
the global average. Thus, bu,i = µ + bi + bu, where µ is the global average in
Mr, and the parameters bi and bu are the observed deviations of user u and item i
respectively. Therefore, to estimate the rating of user u for element i, we have:

r̂u,i = µ+ bi + bu + qti · pu. (7)

The learning process is carried out by minimizing the function of the equation 8:

min
q∗,p∗,b∗

∑
(u,i)∈K

(rui − µ− bi − bu − qti · pu)2 + λ(∥qi∥2 + ∥pu∥2 + b2u + b2i ). (8)

3 Experimental Work

In this section, two groups of data-driven experiments are reported, to observe the
behavior of the studied models with respect to data with different noise levels: Behavior
with respect to noisy data, and effect of LFs in the Regularized-SVD model. The
implementation was done in Python, using Google’s TensorFlow library.
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Table 3. RMSE for each experiment.

Exp Funk-SVD Regularized-SVD Bias-SVD
DS1 DS2 DS1 DS2 DS1 DS2

LFs Min Epoch Min Epoch Min Epoch Min Epoch Min Epoch Min Epoch

A
10 1.229 527 1.091 519 1.227 639 1.093 605 0.778 10,772 0.946 13,160
20 1.764 581 1.393 511 1.568 2,818 1.338 617 0.778 11,321 0.946 12,360
30 2.525 661 1.776 540 1.634 5,982 1.685 860 0.779 10,112 0.945 12,519

B
10 1.485 401 1.331 407 1.487 460 1.324 433 0.972 12,432 1.122 11,754
20 2.126 441 1.672 424 1.794 770 1.642 466 0.963 12,345 1.122 12,832
30 2.818 547 2.072 453 2.286 4,602 2.001 489 0.970 10,976 1.122 12,471

C
10 1.961 292 1.696 314 1.928 285 1.691 320 1.375 12,003 1.436 12,570
20 2.600 289 2.001 306 2.489 341 1.979 323 1.376 10,564 1.436 12,806
30 3.259 312 2.439 343 3.101 3,876 2.392 368 1.370 11,019 1.436 11,830

D
10 1.607 381 1.499 415 1.619 455 1.382 427 0.968 10,010 1.122 9,407
20 2.415 472 1.797 413 2.228 3,121 1.787 438 0.965 11,478 1.122 11,798
30 3.272 480 2.332 440 2.150 5,751 2.255 500 0.965 11,777 1.123 9,608

E
10 2.095 264 1.747 303 2.062 316 1.750 320 1.380 10,972 1.441 9,040
20 2.882 309 2.186 317 2.793 353 2.154 300 1.379 11,543 1.442 10,325
30 3.680 280 2.724 320 2.919 5,912 2.715 342 1.379 11,989 1.441 9,842

F
10 3.041 249 1.810 292 3.049 5,000 1.776 287 1.547 9,927 1.440 8,080
20 4.558 65 2.448 296 2.107 5,878 2.424 280 1.547 7,847 1.440 10,676
30 5.205 67 3.306 270 2.020 5,110 2.744 9,653 1.548 9,324 1.440 9,723

3.1 Behavior with Respect to Noisy Data

In this research, three ML models were implemented: Funk-SVD, Regularized-SVD,
and SVD with biases or Bias-SVD. The results of training and testing with different
degrees of noise were recorded, based on 10, 20 and 30 LFs. 25% of the data, taken
at random, were considered for testing and 75% for training. The learning degree was
set at lr = 0.01 and the regularization constant λ = 0.05. The loss function uses MSE
and Adam’s algorithm, which is a faster variant of classical SGD. In each experiment,
the minimum and the time at which it was reached before deregulation were recorded.
Some error convergence curves are presented in Fig. 3, for each curve a window of the
behavior of the models around the minimum is shown.

3.2 Data Used

Two MovieLens DataSets were used, with different distributions; some characteristics
are shown in Table 1. Table 2 describes the variants that were made to each DataSet
in Table 1, for experimentation. The original DataSets can be found in [9], and their
random variants, as well as the complementary error convergence curves, can be found
in [6].

4 Analysis of Results

Table 3 shows the results with respect to the test data, for both data sets (DS1 and
DS2) and their variants. Fig. 3 shows the error convergence curves for DS1, the curves
obtained for DS2 can be consulted in [6].
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(A) (B)

(C) (D)

(E) (F)

Fig. 3. Convergence curves of the experiments (A, B, C, D, E and F) in DS1.

The columns titled Min and Epoch show the minima and the epochs in which they
were found. The results in bold ones are the best in each experiment. As can be seen in
Table 3, the Bias-SVD algorithm was more accurate in all cases, while Funk-SVD had
the worst performance. This is because Funk-SVD is not regularized.

In the curves of each experiment it can be seen that Funk-SVD converges faster
towards the minimum in all cases, but soon deregulates, while Bias-SVD converges
more slowly. In the Min columns for DS1 and DS2 of Bias-SVD the results with 10, 20
and 30 LFs are, in most cases, the same or very similar, while the corresponding results
in the other two models increase as increasing the number of LFs. This indicates that the
Funk-SVD and Regularized-SVD models require higher complexity than Bias-SVD.
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(A) (B)

Fig. 4. MSE in the model Regularized-SVD and the experiments: A y F.

The results show that, despite the noise, Bias-SVD is not only more accurate but also
more stable, although as can be seen as the noise increases the accuracy decreases, and
in the worst case (exp. F) it even tends to become a little deregulated. In the curves of
the experiments (A, B and C) for DS1, the same pattern of convergence is observed, this
is because in experiment A there are no changes in the data, while in B and C random
changes were made in relation to the position of the ratings and/or in relation to the
frequency of each rating among the same movie rated.

In the curves of the experiments (D, E and F) for DS1, in Regularized-SVD, it can be
observed that as the number of LFs increases, the convergence tends to improve (after
30 LFs in D and E), this is more noticeable in experiment F after 20 LFs, where there
is a trend towards the Bias-SVD minimum, which seems to indicate that when the data
is too noisy, the mechanisms that Bias-SVD-based algorithms have to deal with biases
lead to slower but also more accurate convergence.

The best results for Bias-SVD were obtained in experiment A, both for DS1 and
DS2, which was expected since they are the original data without changes, but it is
striking that the results were not so bad in experiments B and D, with an error close to
1 for DS1, and close to 1.1 for DS2, This means that a score of 5 can be predicted as 4,
that a score of 3 can be predicted as 2 or 4, which would not be far from reality.

4.1 Effect of LFs in the Regularized-SVD Model

In order to observe the behavior of the Regularized-SVD model in relation to the
number of LFs and noisy data, the algorithm was run with 5, 10, 15, 20, 25, 30, 35,
40, 60 and 80 LFs. 10, 000 training epochs were implemented with lr = 0.01 and
λ = 0.05. Some convergence curves for experiments A and F are shown in Fig. 4.

The idea was to establish, through data-driven experiments, that increasing noise
leads to the loss or weakening of hidden relationships that exist in the data. ML models
learn these hidden relationships to make generalizations about unseen data, but if the
data are noisy as in D, or completely chaotic as in F, one would expect the model to be
unable to learn such relationships and therefore not could be generalized.
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Table 4. RMSE in Regularized-SVD in each experiment with DS1 and DS2.

DS1
Experiment A Experiment D Experiment F

LFs Training Test Minimum / Epoch Training Test Minimum / Epoch Training Test Minimum / Epoch
5 0.600 1.30 1.015 / 560 0.767 1.817 1.274 / 388 0.713 4.2 2.087 / 263

10 0.448 1.549 1.226 / 873 0.549 2.154 1.618 / 432 0.157 3.007 3.007 / 10,000

15 0.345 1.722 1.423 / 1,625 0.377 2.359 1.968 / 533 0.138 2.146 2.146 / 10,000

20 0.262 1.722 1.577 / 2,487 0.244 2.448 2.210 / 1,554 0.134 1.973 1.972 / 9,954

25 0.202 1.677 1.613 / 4,544 0.16 2.367 2.206 / 5,069 0.133 1.88 1.88 / 10,000

30 0.159 1.668 1.619 / 5,726 0.137 2.056 2.056 / 10,000 0.132 1.842 1.842 / 10,000

35 0.132 1.564 1.558 / 9,019 0.131 1.789 1.789 / 10,000 0.131 1.804 1.803 / 9,929

40 0.118 1.473 1.469 / 9,910 0.128 1.632 1.632 / 10,000 0.131 1.78 1.78 / 10,000

60 0.111 1.16 1.159 / 9,788 0.126 1.387 1.387 / 10,000 0.13 1.73 1.73 / 10,000

80 0.108 1.037 1.037 / 10,000 0.124 1.309 1.309 / 10,000 0.13 1.705 1.705 / 10,000

DS2
Experiment A Experiment D Experiment F

LFs Training Test Minimum / Epoch Training Test Minimum / Epoch Training Test Minimum / Epoch
5 0.743 0.99 0.98 / 781 0.937 1.520 1.242 /439 1.173 2.033 1.590 / 307

10 0.618 1.500 1.102 /593 0.772 1.954 1.391/442 0.903 2.630 1.806/ 289

15 0.524 1.694 1.203/ 567 0.620 2.162 1.558 / 415 0.634 3.338 2.100 / 270

20 0.428 1.909 1.352 / 658 0.495 2.479 1.801 / 431 0.380 3.922 2.394 / 283

25 0.352 1.955 1.516 / 674 0.359 2.674 2.017 / 471 0.198 3.882 2.816 / 307

30 0.295 2.034 1.689 / 729 0.251 2.795 2.323 / 511 0.135 2.760 2.759 / 10,000

35 0.229 2.012 1.827 / 3,360 0.168 2.792 2.568 / 577 0.122 2.271 2.271 / 10,000

40 0.180 2.027 1.899 / 4,769 0.127 2.493 2.482 / 9,984 0.126 2.041 2.061 / 10,000

60 0.094 1.629 1.629 / 10,000 0.104 1.647 1.647 / 10,000 0.109 1.763 1.762 / 9,979

80 0.086 1.258 1.258 / 10,000 0.101 1.441 1.441 / 10,000 0.107 1.665 1.665 / 10,000

5 Analysis of Results

Table 4 shows the results of the Regularized-SVD model studied, for the training and
test data of the experiments for DS1 and DS2, and its variants: A, D and F, and Fig.
4 shows the convergence curves for MSE. Note that, in experiment A for DS1, by
increasing from 5 to 20 LFs the error increases in the test data, the minimum also
gradually increased from 5 to 30 LFs and these were found, each time at more distant
times. For DS2 the minimum grows until it reaches 40 LFs, then the decrease begins.

These increments of the minimum mean that the model is not learning the hidden
relationships between the training and testing data. In the curves of experiment A in
Fig. 4 it can be seen that the model begins to learn from 30 LFs (see Table 4, in
minimum/epoch column), and its best performance is reached in 80 LFs. Thus, as the
model begins to learn, the error decreases as the number of LFs increases.

On the other hand, in experiment D for DS1, the results show that the error begins to
be minimized from 25 LFs onwards, although it cannot yet be generalized, because the
error of the test data is still large, however, there are indications that the model learns
more difficult in experiment A than in D. A similar pattern can be observed in DS2,
with the difference that convergence is slower. Finally, in experiment F for DS1 (Fig.
4), the DataSet used is too noisy, and as can be seen in Table 4, the final error of the
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test data is always lower as the number of LFs increases, and the minimum begins to
decrease from 15 LFs (for DS2 the decrease of the minimum begins after 25 LFs), it
could be said that from there the model begins to learn, since the training error after
10 LFs (after 20 LFs for DS2) could be considered small. Therefore, it appears that the
learning process of the studied algorithm requires fewer LFs with noisy data (F) than
with data without noise (A). One explanation is that, in experiment A, there are many
hidden relationships in the original data, so a larger number of LFs are needed so that
the model is not so simple.

If the model is intended to learn with few LFs, the underfifting problem is generated,
therefore, the ML model for experiment A needs a little more complexity. While in the
chaotic data of experiment F, the hidden relations have been weakened or lost, so the
model gives the impression of learning with fewer LFs than in experiment A. However,
it could be interpreted that, as the hidden relationships are weakened or lost, the model
does not learn but memorizes the configuration of the data, so the model for F may be
simpler, although less precise than in experiment A.

6 Conclusions

In this work, two groups of experiments have been presented to observe the behavior
of classical SVD models with respect to noisy data. Two MovieLens DataSets with
different distributions were used. For each DataSet, 5 variants were configured in which
a certain level of randomness is introduced into the data. The error was measured using
RMSE and Adam’s algorithm was used as the optimizer.

In the first group of experiments, 10, 20 and 30 LFs were used. In experiment A,
the smallest error in the test data was RMSE = 0.778 for DS1 and RMSE = 0.945
for DS2 in the Bias-SVD model, while in the noisier DataSets the smallest error was
1.547 for 10 and 20 FLs in DS1, and 1,440 for DS2, also in the Bias-SVD model. It
is concluded that despite the noise, Bias-SVD performs better than the others. In the
second group of experiments, the Regularized-SVD model was tested with 5 to 80 LFs,
to observe the effect that LFs have on noisy data. In these experiments it was found
that as the noise in the data increases, the algorithms need a smaller number of LFs to
initiate error convergence.

This can be interpreted in the sense that in distorted or completely chaotic data,
the hidden relationships between the training and test data are weakened or have been
lost, so the algorithms do not need to be very complex to learn. As future work, we
will continue experimenting with noisy data, to try to identify patterns that can help us
address potential sabotage that may exist in RS.
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