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Abstract. In the last ongoing years, there has been a significant ascend-
ing on the field of Natural Language Processing (NLP) for performing
multiple tasks including English Language Teaching (ELT). An effective
strategy to favor the learning process uses interactive devices to engage
learners in their self-learning process. In this work, we present a work-
ing prototype of a humanoid robotic system to assist English language
self-learners through text generation using Long Short Term Memory
(LSTM) Neural Networks. The learners interact with the system using a
Graphic User Interface that generates text according to the English level
of the user. The experimentation was conducted using English learn-
ers and the results were measured accordingly to International English
Language Testing System (IELTS) rubric. Preliminary results show an
increment in the Grammatical Range of learners who interacted with the
system.

Keywords: Robotic systems, natural language processing, text genera-
tion, long short term memory networks.

1 Introduction

As Artificial Intelligence (AI) becomes more equipped to comprehend human
communication, more institutions will adopt this technology for areas where
Natural Language Processing (NLP) would make a difference. AI technology
is already being used in smart home and office assistants, customer service,
healthcare, and human robotics, among others.

There are multiple aspects of AI and NLP that generate the opportunity
of having machines offering engaging, interactive capabilities. However, the cur-
rent state of the art in NLP lacks reasoning and empathy capabilities, making
complex interactions difficult. One way to exploit NLP technology engagement
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potential is the application of assistive technology. A particularly interesting field
is the use of such systems in interactive robotics.

Humanoid robots are useful with tedious and risky errands for people, includ-
ing tasks that can result in exhausting for human beings. Jobs that require a lot
of concentration and feedback, like tutoring and guidance, can benefit from incor-
porating autonomous robotic systems to let the students interact with learning
about a specific field. Robotic systems will require the capacity to understand
human lexis to achieve these goals, making characteristic language handling more
significant.

In the educational context, there are systems capable of teaching or assisting
individuals in a self-learning process, such as Conversational Intelligent Tutoring
Systems. However, they are still not optimal enough to automatically provide
knowledge to help students in the learning process of a language without the
need of human assistance [2]. Also, there have been interesting studies that
show that interactive robotic systems are beneficial for learning [3]. The previous
characteristics devise a synergy opportunity of a robotic system that incorporates
an NLP component to be helpful in the self-learning process [20].

This article presents a functional prototype of a robotic system to assist
the English language learning process through text-generation using Deep Neu-
ral Networks (DNN). A humanoid robot was designed and manufactured to
promote learners’ engagement with the assisting tool. The interaction was con-
ducted using a Graphical User Interface (GUI) incorporated in the robot. A
text-generation component was included to allow the users to interact with the
system and generate language using different English levels. The experimenta-
tion was conducted with English learners and measured using the International
English Language Testing System (IELTS) rubric. Preliminary results show an
improvement of the subjects’ current English level through regular usage of the
system. However, there is a need for further and deeper experimentation to gen-
eralize the findings in this work.

The article is structured as follows: Section 2 describes the state of the art
of robotic systems implemented to assist self-learning; Section 3 presents the
research methodology; Section 4 describes the experimental work carried out,
presenting its results in Section 5. Finally, conclusions and lines of experimenta-
tion for future work are provided in Section 6.

2 Background

A humanoid robot is a robotic system capable of presenting similar features to
resemble human anatomy. These robots are usually presented and utilized as a
research tool in scientific fields aimed to understand the human body structure
and behavior to build. It has been proposed that robotics will be helpful in
various education scenarios [3].

Previous studies indicate that robotics is providing benefits as a teaching tool
in particular in the STEM fields [16], and English learning [10]. Robotic systems
also provide a learning environment that seeks to improve the interdisciplinary
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process of learning, promoting the engagement of students in their learning ac-
tivities [9, 17]. There are examples where the use of a robot for assisting the
learning process is appropriate to use in language skill development as it allows
a richer interaction than digital platforms [15,17].

A significant challenge to incorporate robots as a tool to assist the self-
learning process of a language is to design an engaging experience tightly related
to the language the learner is using. NLP is particularly well suited to close this
gap. NLP has evolved from simple classification methods like logistic regression
to more complex language statistical methods and DNN [14]. Neural Networks
are the dominant paradigm in NLP and have increased the research of end-to-
end systems for understating human language, leading to complex applications
as conversational chatbots [21].

The current and approachable theory of already-existing NLP models makes
extensive use of transformers, which are topologies that use an encoder-decoder
architecture incorporating an attention mechanism [26]. Many state of the art
results make use of this architecture training with vast amounts of information.
Models like BERT [7], T5 [22] and GPT-3 [6] are examples of big transformers
delivering state-of-the-art results for various NLP tasks. Nevertheless, the field
of NLP is still underdeveloped in terms of using low data quantities to perform
fine-tuning in big transformers models.

One way to deal with low quantity data for NLP tasks is using RNNs. These
models are effective for predicting sequence analysis tasks [12], as they store
the information for the current feature based on previous information, including
within the model forecasting and conditioned output capabilities [19].

Recurrent architectures learn the relative importance of different parts of
the sequence; nevertheless, transformers substitute recurrent mechanisms with
attention mechanisms [26], which allows the capture of longer size dependencies
while reinforcing training.

There exist studies that favor traditional models like Conditional Random
Fields (CRF) and LSTM networks over big transformers models in settings
where the amount of data is not enough to perform fine-tuning, or the lan-
guage specificity makes generalization difficult [13,23]. Additionally, LSTM runs
faster, making it well suited for real-time systems interaction [4].

Language models (LM) also have been used for text-generation either using
large transformers [25] or LSTM like in [5,18]. In this research, an LM is gener-
ated using an LSTM trained on a specific dataset, and it is used to predict the
succeeding word. The predicted output word is then appended with the existing
input words and given as new input. This process is continuously repeated by
shifting the window to generate text.

In the presented work, a humanoid robotic system was designed and manu-
factured to help engage in the self-learning process of English language students.
A text-generation module to expose users to a variety of vocabulary and sen-
tences was developed, thorough the experimentation, selection, and fine-tuning
of LSTM models, transformers, and encoder-decoder architectures. The best
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model is selected to perform text-generation using a lower seed-text as shown
in [24].

3 Methodology

This section presents the tools, methodologies, and development approaches used
for corpus creation, text-generation module training, humanoid robotic system
design, and the system integration to allow students to interact with it.

3.1 Corpus Creation

The dataset consisted on different English sentences divided into three categories:
basic, intermediate, and advanced. A human expert IELTS evaluator assisted in
the creation of sentences with different levels of English proficiency, considering
variation in grammatical range and lexical resources according to each level.

The corpus is structured in sentences, divided by punctuation signs that are
further cleaned and omitted to individual process words in the text-generation
model. It contains 4,785 sentences and 150,000 words.

3.2 Text Generation Module

Most advanced models for text-generation make use of deep learning models, in-
cluding LSTM networks and transformer architectures [8]. Different DNN models
were trained using the dataset described in the previous section to develop the
text-generation component. The researched models were: Simple LSTM model,
BERT fine-tuned model, Encoder-Decoder LSTM model, Bidirectional LSTM
model.

To process the text, the input sentences were tokenized and passed through
the input layer of each model, then to an embedding layer, and subsequently fed
to the RNN substructure that processes the tokens. Finally a softmax layer is
used to predict the probability of the next word. The general architecture of the
networks are depicted in the figure 1

Each model was implemented using the Keras framework and trained using
the same dataset split with 80% for training and 20% for testing. Also, at train-
ing time, a development set proportion of 10% was used for Keras to compute
validation loss and accuracy.

After experimenting with the mentioned models, the model with the best
performance accuracy is selected and fine-tuned to perform the text-generation.

3.3 Robotic System Design

The methodology used to design the humanoid robotic system consisted of three
main phases: requirement definition, specification, and design. In the require-
ment definition phase, an analysis of the functionality requirements of the robot
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Fig. 1. General architecture of the text-generation network.

was made, and the functional structures were defined. Then, through the speci-
fication stage, the robot and general guidelines for the project were carried on.
In the design stage, specifications and guidelines were measured quantitatively,
including the kinematics analysis and the definition of mechanical structures.

To favor student engagement with the robot, it was decided to use an anthro-
pomorphic system bearing kinematics considerations. Regardless, the presented
robotic system does not attempt to include mechanical components; the mechan-
ical design was made to adopt mechanical actuators further to let the system
move and increase interaction with users. The parameters that represent kine-
matics configuration in general terms were based on Denavitt Hardenberg [11]
motion equations.

After the design stage was done, the system was drawn using the 3D drawing
software fusion360. The manufacturing stage consists on printing and assembling
a 3D sketch of the entire robotic system with the appropriate parameters ob-
tained from the previous analysis.

3.4 System implementation

The implementation includes an embedded system that captures the user’s speech
and uses Google’s Text to Speech (TTS) web service to get the transcription of
the user utterance. The embedded system sends the transcription to a web ser-
vice implemented in Flask to consume the best text-generation model found in
the experimentation. The implemented service uses the TTS transcription as a
seed to predict the following text using a fixed number of 5 words. After the
model predicts the text, the Flask server sends the predicted text to the em-
bedded system using a webhook. The embedded system uses Google’s Speech to
Text (STT) service to generate an audio file with the predicted text and play
it using a speaker. The system is attached to the robot’s body, and the user
initiates the interaction. Alternatively, a Graphic User Interface (GUI) was im-
plemented using the Gradio library [1], which can consume the service using a
tablet incorporated into the robot. The GUI was intended to include users with
speech or hearing disabilities. The communication architecture is depicted in the
figure 2.
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Fig. 2. System communication architecture.

4 Experimentation

This section shows the methods used for the text-generation module training, the
manufacturing process of the robotic system, and the experimental process to
measure system’s effectivity to assist self-learning process for English students.
The implemented mechanisms are illustrated, as described in section 3 of the
document.

4.1 Corpus Data

The corpus consisted of sentences with 3 different English levels: elemental
(IELTS accuracy level 1-2.5), pre-intermediate (IELTS accuracy level 3-4.5),
and upper intermediate (IETLS accuracy level 6+). Each set contained different
sequence-to-sequence compound-complex sentences. This was recommended by
the IELTS evaluator to optimize three specific levels of English to tackle fluency
levels in different scenarios. The corpus included 171,461 tokens, 150,356 words,
and 4,785 sentences.

4.2 Text Generation Module

The different models were trained using the corpus described in section 4.1 di-
vided into random partitions for training, validation, and test. Four different
models were trained: Simple LSTM model, BERT fine-tuned model, Encoder-
Decoder LSTMmodel, and a Bidirectional LSTMmodel. Each model was trained
for 20 epochs, and the validation metrics were reported using the validation set.
Different models were iterated using dropout regularization (dropout) with differ-
ent probability parameters. Once the best model was obtained in the validation
set, it was evaluated in the test data to report the metrics presented in section
5.1. The models were implemented using Tensorflow 2.0 and Keras on a De-
bian GNU/Linux 10 (buster) x86 64 operating system, supplied with an 11 GB
Nvidia GTX 1080 TI GPU.
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After the first experiments were conducted the best performance model found
was the Bidirectional LSTM measured in terms of accuracy and validation. Once
the best model was found further experimentation was done using a grid search
strategy to find the best hyper-parameters of the model resulting in the following
topology: LSTM layer (100 units), Dropout Layer (0.6 drop rate), LSTM layer
(100 units), Dense layer (100 units, ReLU activation), Dense layer (125 units,
softmax activation).

The best parameters found were the following: Embedding vocabulary-size:
70, dropout layer: 0.6, activation function: softmax, trainable parameters: 180,275,
loss function: categorical cross entropy, batch size: 150.

4.3 Robotic System Manufacturing

The whole manufacturing design was approached under engineering methods to
allow time-optimization and cost reductions to be considered. The process in-
volves the following stages: Material Printing (Through a 3-D printing machine,
segments from the material were printed to further treating and assembly), Ma-
terial purification (Through chemical components, the segments of materials are
purified through a specific epoxy designed to purify the material extracting im-
purities while adding brightness, Assembly of materials. (Through engineering
glue, segments are assembled properly).

Each of the previous stages was divided in three segments: head-manufacturing
segment, arm-manufacturing segment, body-manufacturing segment respecting
each of the previously presented stages. Final configurations of the robot using
the tablet and embedded system are presented in figure 3

Fig. 3. Robot configurations using embedded system and tablet.

4.4 System Evaluation

To evaluate the system’s effectiveness to help learners, they were evaluated using
an IELTS rubric before interacting with the system. After that, the learners were
exposed to interact with the system for 5 days and a new evaluation using the
same rubric was made to asses the performance of the students. The evaluation
was conducted with three subjects, one for each English level in the corpus.
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5 Results

This section shows the results obtained from the experimentation described in
section 4. The improvement of the subjects is analyzed from 250 recorded min-
utes of training with the system by each subject, including quantitative and
qualitative evaluation from IELTS instructors. The system’s performance was
measured to determine the progress of the subjects.

5.1 LSTM Text-forecast Model with Encoded-decoded Attention
Mechanism

Four different models were considered and evaluated to obtain the one with the
best performance. Table 5.1 shows the accuracy obtained with the four different
models when evaluated with the test dataset.

Model Type Accuracy

Simple LSTM 80%

BERT fine tuned 80%

Encoder-Decoder LSTM 89%

Bidirectional LSTM 95%
Table 1. Model accuracy results.

The most suitable model that provided results to be used on experimental
subjects was the Bidirectional LSTM model. Figure 4 shows the training accu-
racy and loss for the 20 epochs of training of the Bidirectional LSTM model.

Fig. 4. Accuracy and loss validation for Bidirectional LSTM model.
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5.2 Fluency Improvement in Subjects

This section presents the outcome for the fluency analysis in each of the three
experimental subjects after 250 minutes of interaction (50 minutes per day for
five consecutive days) with the robotic system.

The grammatical range and accuracy and marked by using a determined
number of grammatical structures (6 types) in a percentage rate of accuracy
and error-mistake (1-100%). The assigned instructors included the number of
grammatical sentence usage in terms of accuracy percentage.

After elementary training, an increase in grammatical range and accuracy,
lexical resources, and fluency is observed, while pronunciation and language-
idiomatic terminology does not show improvement. From the pre-intermediate
level training, a sustained increase overall dimensions was observed, except for
pronunciation. The upper-intermediate level attempted to evaluate fully un-
derstanding of complex ideas generated from the advanced corpus previously
trained. The idea is to oversee a different set of more compound-complex sen-
tences generated by the robotic system. The results before and after the training
are showed in figure 5.

Fig. 5. IELTS metrics comparison before and after training.

5.3 Qualitative Results

The qualitative data obtained in this section was collected from IELTS instruc-
tors who evaluated and listened a set of questions from one specific context of
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coherence for each subject, to determine a mark in grammatical range and ac-
curacy based on IELTS rubric. Finally, instructors who listened the same ideas
in the second interview attached written feedback shown in the figure 6.

Fig. 6. Qualitative feedback from IELTS instructor after training.

The results express that the instructors perceived noticeable enhancement in
the English abilities of the subjects after the interaction with the robot.

6 Conclusions and Future Work

This work presented the design, development, and manufacturing of a humanoid
robotic system to assist English language students in a self-learning process. The
robotic system was developed using a three-phase methodology (requirement
analysis, specification, and design) which yields good results since the system is
articulated and ready to add further interaction using actuators.

Various models were tested to implement the text-generation module; a par-
ticularly interesting observation is related to the relatively poor results (80% ac-
curacy) obtained when using a fine-tuned BERT model. This occurs due to the
relatively small amount of data used to perform the fine-tuning; in this regard,
the bidirectional LSTM model performs better, achieving a 95% of accuracy in
the test set.

The bidirectional LSTM text-generation model was useful to predict text
using a seed given by the user; nevertheless, noticeable irregular fluctuations
were reported on the validation accuracy and loss chart, which can be produced
from irregularities in the English levels used within the corpus.

The experimentation was carried on with three English students of elemen-
tary, pre-intermediate, and upper-intermediate English levels, and their progress
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was measured according to the IELTS rubric. After 250 hours of training, com-
parative results demonstrated an average improvement of 4% in their grammati-
cal range, 4% in grammatical accuracy, and 3.33 % in their fluency. No difference
was observed in their pronunciation abilities.

Quantitative and qualitative data obtained from the experimentation de-
picted a positive result on how a robotic system can provide aid while tackling
a specific ability from a foreign language. In this case, the main improvements
were reported in terms of fluency and grammatical range skills. Qualitative re-
sults show a favorable opinion both from IELTS instructors and students. In
general, they perceived the system as a beneficial tool for the progress of the
students.

The experimental results were limited by time constraints and the reduced
number of subjects, so further research is needed to generalize the observed
results.

The future work regarding this project includes: robust experimentation us-
ing more subjects and more structured training sessions, revision of other learn-
ing techniques and the overall effect on the English language improvement, ex-
periment with variations on the composition of the corpus to measure its impact
in the learning process. Also, interesting research can be conducted regarding
pronunciation improvement using a more controlled spoken interaction with the
users and the effect of dynamic movement adding actuators to the robot and
measuring the impact in the self-learning process.
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Abstract. Endoscopy is the foundation for the diagnosis and treatment
of several gastrointestinal ailments. However, it is an operator-dependent
procedure. The quality of assessment of endoscopy images relies on the
physician’s experience, ability, and conditions. A system capable of au-
tomatically evaluate endoscopy images and classify different gastroin-
testinal findings within them is an alternative to enhance the diagno-
sis quality. Convolutional neural networks (CNN) show great promise
to this end. Research on this topic focuses on the generation of new
complex architectures. Several publications have stated their concerns
about the capability of these state-of-the-art schemes to be deployed
in a clinical setting. Mainly due to the uncertainty to employ them in
real-time because of the computing power these algorithms need. In this
study, we performed hyperparameter optimization during the transfer
learning and fine-tuning process using off-the-shelf CNN (more likely to
operate in real-time) for the image classification task. To this purpose,
we use an evolutionary algorithm. We provide preliminary results to this
method, proving that this approach may reach classification performance
competitive with the novel deep learning structures while maintaining
low complexity in the architecture.

Keywords: Hyperparameter optimization, evolutionary algorithm, med-
ical images, gastrointestinal tract, deep learning.

1 Introduction

In recent years, research on automatic medical image classification has gained
significant importance. The implementation of Artificial Intelligence (AI) in
medicine has been successful in image-intensive specialties, such as radiology,
pathology, ophthalmology, and cardiology [22]. Several publications have re-
ported the current state and expectations of such tools in the area of gastroen-
terology, in particular for endoscopy [1,3,6,8,23]. Endoscopy is the foundation
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for the diagnosis and treatment of diseases of the gastrointestinal (GI) tract.
This procedure is operator-dependent, which generates substantial interobserver
variation in the detection and assessment of GI findings [19]. So, the detection
of GI lesions essentially relies on the expertise of the physician [28].

An automated system capable of classifying different GI findings would help
to reduce the variation in endoscopists’ performance [19]. The development
of computer-aided diagnosis (CAD) systems with this purpose is currently an
open challenge since the feasibility, effectiveness, and safety of CAD for up-
per gastrointestinal endoscopy in clinical practice remain unknown [23]. There
are different approaches for classifying endoscopic images. Deep learning (DL)
techniques usually outperform strategies that use hand-crafted features [23,28].
Consequently, convolutional neural networks (CNN) are the most employed
method nowadays.

The majority of research focuses on proposing new architectures or combining
existing frameworks to enhance classification/detection performance. However,
the systems must allow operating in real-time to achieve the final goal, which is
assistance in real-time during endoscopy [1,8,16,23]. Numerous state-of-the-art
architectures run too slow to be implemented in a clinical setting [19]. Therefore,
optimizing the performance of off-the-shelf architectures (that may allow real-
time operation) is a possible solution to this.

We utilize less complex deep architectures to classify endoscopic images of the
KVASIR dataset [24]. We implement transfer learning in different off-the-shelf
CNN. Formerly, we aim to optimize hyperparameters to improve the classifica-
tion performance of the algorithms. Borgli et al. [5] presented a similar scheme,
yet, they carried out Bayesian optimization. In contrast, we propose to use an
evolutionary algorithm for this purpose.

2 Related Work

Several studies are using AI to analyze endoscopic images. A great deal of these
focuses on a specific GI finding, such as polyp detection and segmentation (e.g.,
[26]), gastric cancer detection and diagnosis (e.g., [20]), diagnosis and detection
of Helicobacter Pylori infection (e.g., [30]), among others. The publication in
2017 of the KVASIR dataset [24], consisting of 8000 images of different GI
findings in images of upper endoscopy, made possible the development of a new
generation of algorithms for endoscopic image classification. These studies aim
to achieve a general classification of the different GI findings that can appear
during endoscopy instead of concentrating on a particular suffering or symptom.

2.1 Dataset

Machine learning (ML) and DL schemes need datasets to be developed, vali-
dated, tested, and compared. With this in mind, Pogolerov et al. [24] created
and published the KVASIR dataset. The original version of this dataset consists
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of 8000 images from inside the GI tract. This dataset contains anatomical land-
marks, pathological findings, procedures, and normal findings. In concrete, the
images belong to one of the following classes: z-line, pylorus, cecum, esophagitis,
polyps, ulcerative colitis, dyed lifted polyps, dyed resection margin, normal colon
mucosa, and stool. Each class has 1000 images of it. Hence, the dataset is
balanced.

2.2 Evaluation Metrics

There exist standard evaluation metrics used to assess classification algorithms.
We take the performance measures from [16]. Since it is the most complete and
recent paper describing and comparing the performance of different methods for
automatic endoscopic image classification. The evaluation metrics are as follows:
recall (REC), specificity (SPEC), accuracy (ACC), precision (PREC), Matthews
correlation coefficient (MCC), and F1 value (F1):

REC =
TP

TP + FN
, (1)

SPEC =
TN

TN + FP
, (2)

PREC =
TP

TP + FP
, (3)

ACC =
TP + TN

TP + FP + TN + FN
, (4)

MCC =
(TP × TN)− (FP × FN)√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)
, (5)

F1 = 2× PREC ×REC

PREC +REC
. (6)

In the above, TP, TN, FP and, FN stand for true positive, true negative,
false positive and, false negative, respectively.

2.3 Classification algorithms

To compare and measure the performance of the proposed method, in this inves-
tigation, we only consider studies that use one version of the KVASIR dataset
for training, validation, and testing. Table 1 shows the studies that use some
version of the KVASIR dataset and have the best classification performance.

During the last years, different paradigms for the classification of endoscopic
images came to be tested. CNN architectures are the current most effective
approach. Regarding classification performance, hybrid architectures have gained
notice. Chang et al. [7] denoted the importance of applying an adequate data
augmentation technique. In [7], they developed an algorithm to automatically
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Table 1. Studies with the best evaluation metrics for endoscopic image classification
using some version of the KVASIR dataset. Metrics as presented in [16].

Autor Architecture MCC ACC F1

Chang et al., 2019 [7] ResNet34 [10] + 0.9520 0.9946 0.9569
SE-ReNext [14] +

Attention-inception-v3 [27]

Harzing et al., 2019 [9] MobileNetV2 [25] 0.9490 0.9936 0.9105

Luo et al., 2019 [21] 10 CNN + 0.9480 0.9941 0.9533
LightGBM [17]

Hoang et al., 2019 [13] ResNet-101 [10] + 0.9406 0.9933 0.9464
Faster R-CNN

Hoang et al., 2018 [12] ResNet-101 [10] + 0.9398 0.9932 0.9342
Faster R-CNN

Thambawita et al., 2018 [29] ResNet-152 [10] + 0.9397 0.9932 0.9297
DenseNet-161 [15] + MP

Hicks et al., 2018 [11] DenseNet-169 [15] 0.9325 0.9924 0.9236

select the data augmentation technique based on the F1 value of a rapid train-
ing in 20 groups of randomly selected test samples. For the classification of
endoscopic images, they developed a CNN architecture consisting of a reduced
version of residual neural network (ResNet34 [10] combined with SE-ReNext [14]
and Attention -inception-v3 [27]. The addition of the attention blocks aimed for
these to learn the differences between classes. This study introduced multi-epoch
fusion, which consists of using the average of the weights of the last 5 training
epochs to improve the model generalization and avoid parametric overfitting.

Chang et al. [7] designed their architecture to carry out multi-label classifi-
cation. So, they realized a threshold selection of belongings to each label. They
tested different threshold combinations for each label and selected the one that
had the best performance. This work was the best evaluated for classification
task in the Biomedia ACM MM Grand Challenge 2019 [16], where they reached
an MCC of 0.9520.

Harzig et al. [9], used 2 CNNs for image classification, and although they
used data augmentation techniques, their results were affected by the imbalance
in the training samples [9]. In this study, the authors focused on making a fast
classification, and not only accurate. Consequently, they used smaller CNNs that
can run even on mobile devices. With MobileNetV2 [25] they achieved an MCC
of 0.95974 in the KVASIR database [9] with an inference time that suggests that
this algorithm could be implemented in real-time.

An interesting idea to combine different CNNs in a single model is that
proposed by Luo et al. [21], they individually tested some state-of-the-art CNNs
and selected the 10 with the best classification results for the KVASIR database.
Subsequently, they trained 10 sub-models for each of the selected CNNs using
cross-validation with the training data. Then, they used the output as a vector
of probabilities of membership to each class of the trained submodels as a set
of characteristics to train ML systems for classification. Their best MCC was
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0.948035, and they obtained it with a LightGBM [17] classifier.
Hoang et al. [13] proposed and applied a data augmentation technique, which

consists of cropping the region of interest for classification and adding this region
of the image to others in the same database. These authors implemented a
residual neural network in conjunction with a Faster R-CNN. The goal of using
these 2 neural networks working together is that ResNet CNN carries out the
classification work and, the detection network serves to reiterate the class. With
this methodology, the authors achieved an MCC of up to 0.9406 for classification
in the Biomedia ACM MM Grand Challenge 2019 test database [16,?].

In [29], Thambawita et al. studied different pre-trained models and com-
binations of these. They concluded that the combination of ResNet-152 and
DenseNet-161 to extract image features, with a multi-layer perceptron for the
classification lead to the best performance. With this approach, they got an
MCC of 0.9397 in the 2018 Medico Classification task.

Hicks et al. [11] conjectured that pre-training the models with a medical
dataset could enhance the models’ performance. However, they discovered that
vast and diverse datasets were better to pre-train, even if they were not similar
to the final dataset. These authors reached an MCC of 0.9325 in the 2018 Medico
Classification task using DenseNet-169.

2.4 Hyperparameter Optimization

In the previous subsection, we presented several studies concerning endoscopic
image classification. In concrete, all of these works use a version of the KVASIR
dataset. It is important to denote that every one of the presented studies used
transfer learning to adapt the employed model to the target domain. During
transfer learning, there are some hyperparameters to tune. These are capable
of enhancing or worsen the model’s performance. Despite the importance of the
hyperparameter, these are usually manually tuned.

The only precedent that currently exists in the literature regarding the
automatic tuning of hyperparameters to optimize the classification performance
of endoscopic images is the research of Borgli et al. [5]. In this study, they used
a Bayesian optimization approach achieving an improvement of up to 10% in
terms of accuracy with other works that used the same CNNs for classification
in the KVASIR database by adjusting the hyperparameters manually.

Borgli et al. [5] considered 4 hyperparameters: The pre-trained model, the
gradient descent optimizing function, the learning rate and, the delimiting layer.
The pre-trained model refers to the kind of architecture that is used to clas-
sify the images. They used KERAS to train the models, so the architectures
and gradient descent optimizing function that they used during the optimiza-
tion process were the ones available in this API. The architectures prospects
were: Xception, VGG16, VGG19, ResNet50, InceptionV3, InceptionRes- NetV2,
DenseNet121, DenseNet169, and DenseNet201. The gradient descent optimizing
function prospects were SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax,
and Nadam. The learning rate was set in a continuous value between 1 and 10−4.
Finally, the delimiting layer refers to the number of layers that are trained in
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the model. This value was set between 0 and the number of layers in the selected
model.

3 Methods and Implementation

3.1 Evolutionary Algorithm

Evolutive algorithms use the paradigm of evolution proposed by Darwin, in
which the fundamental law is the principle of variation and selection. This princi-
ple of changing each generation (through reproduction) is the main component of
the evolutionary strategies [4]. Evolutionary algorithms are based on the collective
learning process within a population of individuals, each of which represents a
search point in the space of potential solutions to a given problem. Back, 1993
[2].

In evolutionary algorithms, several individuals explore the solution space of
the environment at random points. Then, the best-evaluated individuals pass
their genes (information) to the next generation. Evaluation is the procedure of
assessing how well the solutions fit the established goals. The genes of the selected
individuals are preserved and mixed in new individuals with recombination
mechanisms. Also, it is a good practice to consider a mutation factor during
this procedure. The mutation is the introduction of random information, which
introduces innovation into the population [2]. Fig. 1 shows a general overview of
an evolutionary algorithm.

Fig. 1. General evolutionary algorithm.
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We considered the whole population for the selection process. We use tour-
nament selection, in which the algorithm takes n individuals randomly from the
population, compares them, and selects the individual with the best evaluation.
The algorithm repeats this process until it reaches the desired total number of
selected individuals. All the individuals have the same chance to participate in
the tournament. Nevertheless, the individuals with the highest evaluations are
more likely to win the match and preserve their genes.

There are different mechanisms for the generation of new individuals. Overall,
this procedure consists of the information (genes) combination of the selected
individuals and a mutation factor to introduce novel information into the popu-
lation. There exist different combination mechanisms, such as recombination
(generate a new individual mixing up the parents’ genes), raw combination
(generate new genes by blending the parents’ genes), etc. The combination
mechanisms could be static or dynamic. The same happens with the mutation
factor. Fig. 2 shows an example of the different combination techniques and the
mutation procedure.

During this work, we use a static combination method without recombi-
nation. We use the arithmetic mean of the parents’ genes as the combination
method. We considered a mutation factor as an independent variable for every
gen for every individual. Table 2 shows a pseudocode representation of the
evolutionary algorithms that we use during the experiments presented in this
study.

Fig. 2. Generation mechanisms of evolutive algorithms.

3.2 Data

The KVASIR dataset [24] has 8000 labeled images, 1000 for each class. We split
these images into three subsets for training, validation, and testing, each with
4000, 2400, and 1600 images, respectively.
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Table 2. Pseudocode representation of the evolutive algorithm.

1) Random generation of initial population of size M .
2) While condition of conclusion is not satisfied.
3) Evaluation of the population.
4) Selection of the N individuals for the crossover.
5) Generation of a new population of size M with the crossover of the N

selected individuals.
6) End.

We used data augmentation techniques. In every training iteration, the train-
ing images went through a transformation step, where they are randomly rotated
at an angle between 1◦ and 355◦. Also, a horizontal flip, vertical flip, and
brightness adjustment are applied to every image, with a 50% probability for
every transformation.

3.3 Experiments Settings

The experiments were carried out using the following hardware specifications:
AMD Ryzen 5 3400G CPU, one NVIDIA GeForce GTX 1660 Ti GPU, 16 GB
RAM, and 476 GB system memory. All the algorithms were implemented in
Python 3.8.5, using the environment Spyder 4.1.5. Pytorch 1.7.1 was used to
obtain the pretrained CNNs architectures and gradient descent optimization for
training, which was Adam algorithm [18].

We included four hyperparameters in the optimization algorithm during the
transfer learning: kind of CNN architecture, learning rate, delimiting layer, and
training epochs. The gene representing the kind of CNN architecture takes dis-
crete values, one for each architecture available, which were: AlexNet, ResNet-18,
ResNet-34, Resnet50, SqueezeNet-1.1, DenseNet-121, DenseNet-169, MobileNet-
v2, ShuffleNet-v2-x0.5, and ResNext-50-32x4d. The other three genes take con-
tinuous values. For the learning rate, we established bounds between 10−4 and
10−6. The bounds of the delimiting layer depended on the selected architecture.
The lower bound represents that the last half of the layers are fine-tuned, and
the upper bound represents that the training only affects the classification layers.
For the training epochs gen, we set the bounds between 5 and 15.

The maximization of the validation accuracy was the optimization target for
the evolutionary algorithm. During the generation process, the genes had a prob-
ability of crossover (with arithmetic mean) of 50%, except the CNN architecture,
which automatically inherited the gene of the best-evaluated parent. The learn-
ing rate, delimiting layer, and training epochs genes had a mutation probability
of 15%, and the CNN architecture a probability of 25%. The population during
the optimization consisted of 20 individuals. The evolutionary algorithm had 5
generations in total since the experiment goal was to prove that this kind of
optimization is effective for this task.
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4 Results

The best-evaluated individual of the initial population (0-generation) had a
validation accuracy of 0.8995, and the best-evaluated individual of the fifth
generation has a validation accuracy of 0.9821. Table 3 shows the characteristics
of the best-evaluated individual of each generation in detail.

Table 3. Best evaluated individuals per generation.

Gene- Learning Architecture Layers Epochs Validation Validation Validation
ration rate pretrained Epochs Acc MCC F1

0 8.888−4 ShuffleNet-v2-x0.5 0.9341 11 0.9718 0.8709 0.8870

1 1.892−4 ResNext-50-32x4d 0.6615 12 0.9786 0.9023 0.9145

2 1.892−4 ResNet-18 0.9587 12 0.9769 0.8942 0.9075

3 2.209−4 ResNext-50-32x4d 0.6950 11 0.9783 0.9006 0.9130

4 3.231−4 MobileNet-v2 0.8870 11 0.9804 0.9103 0.9215

5 2.306−5 ResNet-50 0.9101 11 0.9821 0.9183 0.9285

Fig. 3. Validation accuracy (left) and MCC (right) of the best-evaluated individuals
per generation.

5 Conclusions

The experiment results imply that an evolutionary strategy can improve the
accuracy of an endoscopy image classification algorithm. The results presented
are evidence that this kind of optimization paradigm can lead to classification
performance comparable to that of the best-evaluated architectures since the val-
idation accuracy, MCC, and F1 value reached during the experiment are similar
to those presented in table 1. Nevertheless, the objective of the experiment was
to demonstrate that optimization of hyperparameter using a genetic algorithm is
capable of improving the classification performance of off-the-shelf architectures.
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The results presented are enough to prove it, considering that we got a rising of
0.0474% in the validation MCC in 5 optimization steps using only 20 individuals
and basic generation mechanisms.

An inconvenience of using evolutionary strategies is that this kind of opti-
mization algorithms usually needs several individuals. In computationally ex-
pensive tasks (such as this), it can take too long to reach the optimal solution.
A possible solution to this issue is using surrogate models.

During the experiment, we only considered four genes (CNN architecture,
learning rate, delimiting layer, and training epochs), and we set the bounds of
the searching space based on the literature. In the future, we can extend the
number of genes by including other hyperparameters, and we can refine the
bounds of the searching space by carrying out a characterization of the solution
space of the optimization problem.

Also, in this work, we set as optimization target the maximization of the
validation accuracy. In future research, we can implement multi-objective opti-
mization. For example, we can set as optimization target the maximization of
other evaluation metrics, such as the MCC value, along with the minimization
of the training time.
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Abstract. Speaker tracking is the task of finding hypothesized speakers
in a multi-speaker conversation. In this paper, we propose a novel way to
perform online speaker tracking based on neural networks. We designed
an architecture that mimics the probabilistic linear discriminant anal-
ysis (PLDA) algorithm and outputs the most likely regions uttered by
a predefined target speaker. This output can be used for downstream
tasks such as diarization or tracking, as analyzed in this paper. For
sake of generalization, we used two standard public datasets that were
carefully modified to create two-speaker subsets with additional overlap-
ping speech and non-target speakers. Relative improvements of 40% and
20% in minDCF for CALLHOME and DIHARD II single-channel show
promising performance.

Keywords: Speaker tracking, speaker diarization, speaker verification,
x-vector, i-vector.

1 Introduction

Speaker tracking can be considered as the process of identifying all regions ut-
tered by a hypothesized speaker in a multi-speaker recording [1]. Similarly to
speaker diarization, which answers the question ”who spoke when?”, speaker
tracking searches for those regions, but assigns speaker identities to them. Find-
ing where a given speaker is intervening in a conversation is an essential pre-
processing step for many multi-speaker applications, where speech data from
previous enrollments may be available, such as virtual assistants, meetings and
broadcast news transcription and indexing [8].

As shown in [6], diarization and tracking are two methods closely related.
Although tracking would benefit from the diarization, in this research, we ex-
plored the possibility of including a neural network as a robust classifier that

29

ISSN 1870-4069

Research in Computing Science 150(9), 2021pp. 29–41; rec. 2021-07-26; acc. 2021-10-14



Fig. 1. Pipeline of the proposed speaker tracking system.

can operate similarly to the probabilistic linear discriminant analysis (PLDA),
with the goal of naturally providing results for diarization and tracking.

Since there are just a few studies on speaker tracking [1,8,24], we use diariza-
tion as the main background and inspiration of this work. Most of the standard
speaker diarization systems focus on offline clustering as it uses all the con-
textual information to label the speech regions. Examples of such algorithms
include agglomerative hierarchical clustering (AHC) [10,13], k-means [14,2] and
spectral clustering [11,15]. These clustering methods cannot be used in real-time
applications since they require complete speech data upfront. Latency-sensitive
applications must have speaker labels generated as soon as speech segments
are available to the system. We reviewed diarization approaches that are ef-
fective in an online setup. In [27] an embedding-based speaker diarization sys-
tem is presented, it uses d-vectors [26] with an LSTM-based scoring function
in combination with spectral clustering to successfully perform offline diariza-
tion; however, the diarization error rate almost doubles in its online modality.
Another online diarization approach is introduced in [7], they propose a deep
neural network (DNN) embedding suitable for online processing referred to as
speaker-corrupted embedding. The diarization algorithm uses cosine similarity
to compare the speaker models and the segments embeddings to make the label-
ing decisions. A promising approach for diarization is the use of acoustic features
of a speaker to target the system’s detection to their speech. In [12], an initial
estimation of target’s speaker features (i-vectors) is performed with clustering-
based diarization, providing excellent performance in CHiME-6. Although, this
is an offline approach, it could be extended to an online setup.

In this paper, we propose an online speaker tracking pipeline by replacing the
unsupervised offline clustering module from the standard diarization system with
an online tracking method that uses a DNN as a robust embedding classifier.
The main idea is to mimic the PLDA, scoring the similarity of each hypothesized
speaker at every segment of a recording. As shown in Fig. 1, our speaker tracking
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system shares many of its components with the standard diarization pipeline
(segmentation, embedding extraction, clustering, and resegmentation) [4,30,18],
with the main difference being the removal of the clustering algorithm.

The experimental results on CALLHOME and DIHARD II single-channel [16]
reveal that our method achieves competitive results in comparison to the PLDA
baseline, while improving the verification performance in EER and minDCF3.

2 Methodology

In this section, we introduce our speaker tracking framework; Fig. 1 illustrates
the overall steps of our tracking pipeline.

2.1 Speech Segmentation and Embedding Extraction

The first module in our pipeline is inspired by the standard diarization system.
It uses a Voice Activity Detector (VAD) to determine the speech parts in the
input audio signal, excluding the non-speech regions from subsequent processing.
A sliding window further divides these regions into a set of smaller, overlapping
speech segments, which are the units of audio that can be attributed to a speaker,
establishing the temporal resolution of the speaker tracking results. We decided
to use an oracle VAD as a segmentation mechanism to focus our efforts on
checking whether our proposed architecture can track speakers accurately.

Embedding extraction The next step in the pipeline is to extract an embed-
ding from each segment; such embeddings will be used in two tasks: develop the
hypothesized speaker’s models and label the segments. Our system was tested
following the i-vector- and x-vector-based approaches [17,20]. The i-vector, in-
troduced by Dehak et al. [3], is a speaker representation that provides a way to
reduce large-dimensional input speech data to a small-dimensional feature vector
that retains most of the relevant channel and speaker information. The x-vector,
introduced by Snyder et al. [23,20] is an embedding extracted from a deep neu-
ral network trained to discriminate between speakers, mapping variable-length
speech segments to a fixed-length feature vector. Nowadays, the x-vector ap-
proach provides state-of-the-art performance in many speaker recognition fields,
such as speaker verification and speaker diarization [19,22,28,16].

2.2 Speaker Model Generation

After extracting the segment embeddings, a speaker model is generated for each
hypothesized speaker. In our experimental setup, we compute each speaker model
by averaging its first embeddings from ground truth labels. The number of em-
beddings used in this process depends on a tunable time window that will be

3 Code available at: https://github.com/CarlosRCS9/kaldi/tree/paper-dnn-
tracking/egs/dnn tracking/v1
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analyzed later in this research. We define the variable model time as the window
width used to generate the speakers’ models.

With this approach, the system operates in an online fashion in which, with
a few labeled samples of the target speakers, it can find their appearances along
the complete audio. In a real-life scenario, we expect to have speech data from
the target speakers from previous enrollments or a method to record a speaker
model, such as a calibration procedure.

2.3 Speaker Segment Identification

The resulting segment embeddings and the speakers’ models are then passed
through a speaker identification/verification stage. The speaker-tracking DNN,
the key component of our pipeline, performs this task.

According to the run-time latency, the speaker identification module follows
an online tracking strategy. It produces a speaker label immediately after a
segment is available without the knowledge of future segments, making it easier
for the system to deal with large amounts of audio data since the clustering stage
is no longer used.

Fig. 2. Network input and output layer for the segment identification process.

Features Fig. 2 illustrates the structure of the network’s input and output
layers during the segment labeling process. For a given utterance, the input and
output sequences of the network (X ′, Y ′) are defined as follows:

– The speech segmentation and embedding extraction module provides a se-
quence of embeddings X = (x1, x2, . . . , xT ), where each xt ∈ Rb has a 1:1
correspondence to the T segments obtained from the input utterance, and b
is the dimension of every embedding.
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– The speaker model generation module provides the sequenceM = (m1,m2, . . . ,mS)
where ms ∈ Rb, such that each entry of the sequence is a model of one of
the S tracked speakers.

– The input sequence of our network is defined as the concatenation of M to
each element of X. X ′ = {x⌢

t M |xt ∈ X}.
– The sequence Y = (y1, y2, . . . , yT ) is given by the speaker labels of the T

segments.
– The output sequence is given by Y ′ = {Φ(yt)|yt ∈ Y } where Φ(yt) =

{P (ms|xt, yt)|ms ∈ M}. At training time, Y is given by the ground-truth
labels. At inference, Y is computed by the estimated labels.

Architecture Table 1 summarizes the final DNN architecture used in this work.
The first three convolutional layers of the network provide a comparison stream
for each of the S speakers models and the current audio segment. The similarity
measure between the segment embedding and the input speaker models is hence
computed using the contextual information of all the speaker models. Note that
our architecture intends to track up to S speakers simultaneously. To track less
than S speakers, it is required to add zero-padding in the input layer at the
location where a speaker model would be.

The last fully-connected feed-forward layers use the S comparison streams
to score the similarity of the target speaker model and the incoming segment,
with the last layer having a sigmoid activation function instead of softmax. Such
activation function allows the network to provide zero scores in all of its outputs
when a segment does not belong to any of the tracked speakers, as shown in
Fig. 3.

Table 1. Speaker-tracking DNN architecture.

Layer type Filters Kernel Input × output

Conv1d.ReLU S3 3 b(S + 1)× (b− 2)S3

Conv1d.ReLU S2 3 (b− 2)S3 × (b− 4)S2

Conv1d.ReLU S 3 (b− 4)S2 × (b− 6)S
Dense.ReLU (b− 6)S × 32S
Dense.ReLU 32S × 16S
Dense.Sigmoid 16S × S

Training During training, all possible permutations of the elements of M are
computed and appended to every input xt with two main goals: reduce overfitting
by forcing all output neurons to score the same speaker models, and augment
the number of training samples. This procedure ensures the DNN scoring to
be independent of the speaker model permutation order. Fig. 3 shows how the
training data is furthermore augmented by adding zero-padding as a non-speaker
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model feature. This procedure simulates a verification task during training since
the network has to decide whether the current segment embedding belongs to
one of the available models or not.

At inference time, our system initializes with an array of hypothesized speaker
models (with length less or equal to S). With each recording segment, the sim-
ilarity of each hypothesized speaker is computed. This is done by appending
the models’ array to the segment embedding as the network’s input, with the
output neurons providing similarity scores for each speaker. In an identification
setup, we label the segment with the highest score index. If the task requires
verification, a certainty threshold is used to label the segments.

Fig. 3. Input layer with zero padding.

2.4 Probabilistic Linear Discriminant Analysis (PLDA)

The baseline system uses probabilistic linear discriminant analysis (PLDA) scor-
ing as the similarity measure4. It has been proven to achieve state-of-the-art per-
formance in many speaker recognition tasks. It provides a powerful distortion-
resistant mechanism to distinguish between different speakers and robustness to
same variability [9,31,16,29].

2.5 Post-processing

Due to the online nature of our pipeline, the post-processing step is applied as
soon as a speaker label is inferred. This step refines the tracking results by per-
forming two tasks: merging the contiguous segments that share the same label,
and, utilizing a median-filtering-like process to adjust the previously inferred

4 PLDA scoring computes the loglikelihood ratio between two embeddings
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label (xt−1). This process is performed with a window of the last three segments
Wt = (xt−2, xt−1, xt), modifying the in-between speaker label if the surrounding
labels are equal to each other, producing three contiguous segments with the
same label.

3 Experiments

This section describes our experimental setup and results. We decided on a 1.0 s
width and 0.5 s step sliding window at the speech segmentation step, discarding
segments shorter than 0.5 s to ensure sufficient speaker information. Both i-
and x-vectors were extracted using the Kaldi’s CALLHOME diarization recipes5

[18]. For CALLHOME x-vector experiments, a publicly available [20,21] model
and PLDA backend were used.

3.1 Evaluation Metrics

The system performance was evaluated in terms of Equal Error Rate (EER) and
minimum Detection Cost Function (minDCF) [25], as the key component of our
tracking framework follows a speaker verification approach. Besides, we report
Diarization Error Rate (DER) [5] since our framework shares characteristics with
the standard diarization system.

3.2 Datasets

We tested our system on two standard public datasets: (1) CALLHOME, it con-
tains 500 utterances distributed across six languages: Arabic, English, German,
Japanese, Mandarin, and Spanish. Each utterance contains up to 7 speakers (2)
DIHARD II single-channel development and evaluation subsets (LDC2019E31,
LDC2019E32), focused on ”hard” speaker diarization, contains 5-10 minute En-
glish utterances selected from 11 conversational domains, each including approx-
imately 2 hours of audio. Since our approach is supervised, we performed a 2-fold
cross-validation on each dataset using standard partitions: callhome1 and call-
home2 from Kaldi’s CALLHOME diarization recipe [18], and DIHARD II single
channel’s development and evaluation subsets. Then, the partitions’ results are
combined to report the averaged DER, EER and minDCF of each dataset.

To evaluate our proposed method in more difficult conditions, we increased
the variability of the datasets in two steps. First, we increased the number of
non-target speakers by adding to each recording speakers models from all the
other recordings as new segments features. Such models were extracted with
the same model time as the target’s speakers. This set is used as the speaker
verification conditions with its 0.17% target probability.

5 https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome diarization/v1 and
/v2
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The second modification to the datasets aims to give us a better hint of the
system’s performance in a real-life scenario, by increasing the number of overlap-
ping speech instances, as both datasets have a low percentage of speaker overlap
(CALLHOME ∼16%, DIHARD II single channel ∼9%). To increase the over-
lapping examples, we use the ground-truth labels to extract the non-overlapping
audio segments of each speaker. Then, those segments are merged into a set of
single-speaker utterances for each recording. After that, the single-speaker ut-
terances are pairwise overlapped to create a new set of two-speaker-overlapping
utterances. Finally, the new overlapping utterances are cut into segments (follow-
ing Algorithm 1) and inserted into their original recordings at random locations
with a uniform distribution.

Algorithm 1: Get the lengths to cut from an utterance

Result: A list of lengths to cut from an utterance
T is the length of an utterance;
L is an empty list;
while T > 1.5 do

l←
√
T ;

T ← T − l;
append l to L;

end
append l to L;

The resulting datataset is used as the speaker overlap condition. It contains
an additional ∼18% of speaker overlap in CALLHOME, and ∼30% in DIHARD
II single channel. It is worth mentioning that the speaker verification condition is
a subset of the speaker overlap one, so the target probability increases to 0.35%
with the additional target examples.

3.3 Baseline

We compared the performance of our proposed system with a conventional of-
fline diarization method: PLDA scoring with AHC, following the Kaldi’s CALL-
HOME diarization recipe [18] with oracle number of speakers. The i- and x-vector
PLDA backends were trained for each cross-validation fold with the recipe and
used along all experiments.

Our primary baseline method follows the same procedure as our proposed
system, but replaces the DNN-based identification module with a PLDA. The
PLDA backends are the same as the ones used in the offline diarization baseline.
We report the averaged results across the dataset partitions.

3.4 Results

The first set of experiments follows optimal conditions for speaker tracking: the
input audio signal contains only speech from two tracked-speakers, and there is
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Table 2. DER (%), EER (%) and minDCF (52% target probability) on two datasets
given the optimal conditions.

Model time
PLDA DNN

DER EER minDCF DER EER minDCF

CALLHOME i-vector (Offline DER: 16.95)
3.0 s 7.11 19.03 0.39 5.86 4.33 0.08
5.5 s 5.47 16.09 0.33 4.99 3.32 0.06
10.5 s 4.42 14.32 0.29 4.30 2.84 0.05
x-vector (Offline DER: 15.84)
3.0 s 9.86 17.63 0.36 11.46 11.45 0.23
5.5 s 7.21 14.18 0.29 8.61 8.10 0.16
10.5 s 5.53 11.66 0.24 5.74 4.83 0.10

DIHARD II i-vector (Offline DER: 21.53)
3.0 s 18.96 36.62 0.75 18.22 21.95 0.45
5.5 s 16.11 34.73 0.72 13.80 14.80 0.30
10.5 s 13.23 33.70 0.69 11.36 12.45 0.26
x-vector (Offline DER: 21.36)
3.0 s 15.80 28.03 0.58 20.20 27.25 0.56
5.5 s 11.95 24.86 0.51 18.20 25.75 0.53
10.5 s 10.17 23.66 0.49 12.25 15.75 0.32

no overlapping speech. To have 2-speaker recordings, we applied a mask at the
instances where a third speaker appeared in each recording.

We took this decision based on the fact that if we filtered out entire recordings
with more than two speakers, we would have lost a large percentage of each
dataset (60% CALLHOME and 47% DIHARD II single channel).

Table 2 show the results. All offline diarization results follow the same trend:
x-vectors perform better than i-vectors, with the PLDA-based tracking having
a clear advantage over it’s offline counterpart. The reason behind this behavior
is that the tracking pipeline receives the speakers’ models beforehand.

An interesting phenomenon is that the PLDA-based tracking in CALLHOME
shows better DER performance with i-vectors rather than x-vectors (also hap-
pens in Table 3). We believe that this is related to the generation of speakers
models with embeddings trained with less data (as it does not happen in DI-
HARD II, whose x-vector extractor was trained with VoxCeleb data).

In most cases, the DNN-based tracking outperforms the PLDA baseline in
the verification metrics (EER, minDCF). It is reasonable for several reasons: (1)
The network’s training promoted a binary-like similarity score. (2) Due to the
speaker models permutations performed in training, the network had to perform
more rejections. (3) The similarity score for each speaker is computed with all
speakers’ models available as contextual information.

For DER, the PLDA system has a clear advantage. Still, the DNN pipeline
keeps close results despite its relatively simple architecture; we expect to over-
come this by moving to a recurrent neural network (RNN).
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The most interesting phenomenon in Tables 2 and 3 is that in all DNN re-
sults, the x-vectors have a clear disadvantage against i-vectors in all the provided
metrics. We reviewed and discarded possible procedural and architectural mis-
takes. The same behavior was found in [12] with a similar DNN architecture.
We agree that a possible reason for this behavior is the need for a complex
DNN architecture to score an embedding derived from a much more complex
architecture.

Table 3. DER (%), EER (%) and minDCF (17% target probability) given the speaker
verification conditions.

Model time
PLDA DNN

DER EER minDCF DER EER minDCF

CALLHOME i-vector
5.5 s 5.47 22.27 0.80 4.56 7.75 0.28
10.5 s 4.42 22.22 0.83 4.43 5.89 0.21
x-vector
5.5 s 7.20 11.09 0.41 8.13 8.74 0.30
10.5 s 5.53 9.50 0.37 6.24 4.40 0.19

DIHARD II i-vector
5.5 s 16.11 32.64 0.99 15.42 17.96 0.62
10.5 s 13.23 32.89 0.99 11.44 14.67 0.54
x-vector
5.5 s 11.85 15.59 0.70 16.84 15.89 0.66
10.5 s 10.25 15.17 0.68 13.77 15.06 0.73

Finally, we evaluate our proposed system considering overlapped speech, as
described in Section 3.2. In this set of experiments, the number of tracked speak-
ers is fixed to 2, with the input audio signal containing non-overlapping and
overlapping speech from them in addition to non-target speakers.

In order to select a segment as an overlap of the tracked speakers, it was
necessary to train a DNN model able to work with three speaker models simul-
taneously (S = 3), the first two models representing each of the two speakers,
and the third one, their overlap; as shown in Fig. 4. During test time, an embed-
ding of the tracked speaker’s overlapping speech was used as the third model, so
when the network selected such embedding, we knew it was overlapping speech
from the tracked speakers.

In 4, we report a loss in DER performance as overlapping speech dramatically
increases the complexity of tracking. However, even with an additional model to
score, we keep competitive performance in both EER and minDCF since DNN
keeps its binary-like scoring while selecting overlapping speech.
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Fig. 4. Network input and output layers extended for overlap detection.

Table 4. DER (%), EER (%) and minDCF (35% target probability) for i-vector,
given the speaker overlap conditions.

Model time
CALLHOME DIHARD II

DER EER minDCF DER EER minDCF

3.0 s 20.82 13.20 0.35 37.17 29.46 0.73
5.5 s 15.78 9.72 0.26 31.99 24.78 0.64
10.5 s 12.52 7.50 0.20 28.78 21.32 0.55

4 Conclusions

In this paper, we propose a novel embedding-based speaker-tracking DNN model
focused on online tracking. We demonstrated our approach’s efficiency through
several experiments on two standard public datasets: CALLHOME and DI-
HARD II single channel. Results show better performance than the PLDA base-
line in EER and minDCF in different experimental conditions.

For future research, we would like to extend our current DNN model to an
online diarization and tracking system, where a recurrent neural network (RNN)
will be responsible for selecting and updating the speaker models without having
to resort to external sources. We expect such a system to provide not only the
diarization results but also the set of speaker models that it will generate during
an adaptive diarization process.
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