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Abstract. Comparative study of optimizers in the training of a convo-
lutional neural network in a binary recognition model. In Machine and
Deep learning, the optimizer selection is a crucial step, as the model
performance depends heavily on the optimizer selected. Deep neural
network architectures often have multiple layers of representations used
to learn from training data automatically. Hyperparameter calibration
plays an essential role in the learning process. As the parameter values
may vary depending on the data set, we want to obtain an essential
improvement in the model performance in the training phase. This work’s
main objective was to determine which optimizer can obtain the best
accuracy in the training phase of a convolutional neural network used to
perform binary classification using the public dataset Dogs vs. Cats,
consisting of a total of 25,000 images. The compared optimizers are
SGD, Adam, and RMSprop. The model architecture developed consists
of three convolution layers with their corresponding maxpooling layer.
As a result, experiments show that the Adam optimizer offers better
performance. These results suggest that the use of Adam to train binary
convolutional neural networks should be considered.

Keywords: Image classification, optimizer, deep learning, convolutional
neural networks.

1 Introduction

The implementation of computer vision has attracted the interest of researchers
within the area of computer science, as Deep learning has become a promising
area in the field of computer vision [10]. Deep learning uses Artificial neural
networks internally as the main algorithm to perform predictions, classification,
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and so on. Image classification, covering a diverse range of applications including
biometrics [12], video surveillance [18] and medical research [14].

Among the most promising algorithms, the convolutional neural network
(CNN) technique [15], is the most widely used deep learning algorithm. In
this paper, we describe a binary classification problem and analyze the Adam,
RMSprop, and SGD optimizers, which are used to train deep learning neural
networks. ADAM is the most recent and represents an improvement of other
optimizers, but it is not always the one that generates the best model. Follow-
ing, we present key concepts and optimization techniques, followed by a brief
description of neural convolution networks. The rest of the work is organized in
the following order: Section 2 materials and methods in section 2. The results
of the experiments are presented in section 3. Finally, section 4 concludes the
article.

1.1 Artificial Neural Networks

Artificial neural networks (ANN) aim to perform computational tasks using a
large number of simple interconnected processing units called neurons or nodes.
The connections between neurons are associated with parameters called weights
that can be modified, through a training process, to associate the desired output
to a specific input [4]. It can be described as a directed graph in which each node
performs a transfer function of the form [23].

Hyperparameters are a particular set of parameters used in the learning
process during training. Hyperparameters are vital since they directly impact
the neural network’s training phase and hence in the model performance. There
are several hyperparameter optimization techniques, but it is the data scientist’s
responsibility to initialize these values manually. The parameters might be an
integer or a continuous or categorical variable which ranges from the lower to
upper bound values [22].

The basic hyperparameters of an ANN are:

– Number of hidden layers: Neural networks with single-layer tunable param-
eters are very limited in what they can do, as is the case with perceptrons.
Therefore, it is natural to expand a neural network’s capacity by adding
additional layers of neurons. From outside the network, only the first and
last layers of a multi-layer network are visible: the input and output layers.
All other layers are “hidden” layers”. The additional layers are therefore
called hidden layers because they are not visible from the outside [2].

– Number of hidden units: Each hidden layers can have a different number of
neurons.

– Learning rate: The learning rate is a small number, often between 0.00001
and 0.05, which affects the magnitude that is added to the current weight of
an edge in order to train the model with these updated weights [5]. In nearly
all gradient descent algorithms, the choice of learning rate remains central
to efficiency. Yoshua Bengio [1] claims that it is often the single most crucial
hyper-parameter and that it always should be tuned.

74

Marco López-Sánchez, José Hernández-Torruco, Betania Hernández-Ocaña, et al.

Research in Computing Science 150(4), 2021 ISSN 1870-4069



– Number of epochs: One epoch means that each sample in the training dataset
has had an opportunity to update the internal model parameters. An epoch
is comprised of one or more batches. For example, an epoch that has one
batch is called the batch gradient descent learning algorithm [3].

– Batch size: The batch size is a hyperparameter that defines the number of
samples to work through before updating the internal model parameters [3].

– Loss function: This is a tool to measure a decision algorithm’s performance
(or classifier). The loss function measures each classifier action’s cost and
converts an error probability error into a decision. This approach allows
us to handle situations where particular classification mistakes have to be
considered differently from the others [4].

– Activation function: This is critical as images and features within an image
are highly non-linear problems, and most other functions within Convo-
lutional neural networks (Conv2D, pooling, fully connected layers, and so
on) generate only linear transformations. The activation function generates
the non-linearity while mapping input values to its ranges. Many activation
functions are used, but the most common ones are Sigmoid, Tanh, ReLU.

An optimizer’s role is to update the weight parameters then to minimize
the error function or loss function, where the error is the difference between
the actual value and the predicted value. Before starting the training phase,
the optimizer that carries out this task must be selected along with its specific
algorithmic hyperparameters. The optimizers compared in this study are:

SGD The Stochastic Gradient Descent algorithm [19] is one of the earliest
methods used for training neural networks. The main advantage of these
methods is the simplicity of each iteration, both in generating the search
direction and in performing the update of variables [17].

RMSprop It was introduced to address the monotonically decreasing learning
rate problem. This problem is present in the AdaGrad optimizer [11]; it uses
exponential decay in the first step.

Adam The Adam optimization [13] algorithm was introduced to combine the
benefits of AdaGrad, and RMSProp algorithms.

The performance metrics used in this work are:

– Accuracy: It is the most used metric to summarize the performance of a
supervised learning model, as it indicates the proportion of examples that a
classifier can classify correctly, usually indicated as a percentage [2].

– Confusion matrix: In its simplest form, a confusion matrix (also called an
error matrix) is a type of contingency table with two rows and two columns
that contains the numbers of false positives, false negatives, true positives,
and true negatives [5].

– ROC curve: The ROC (receiver operating characteristic) curve is a curve
that plots the TPR (true positive rate, i.e., the recall) against the FPR
(false positive rate) [5].
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1.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a deep learning algorithm specialized
in image classification. The core element of CNNs is the processing of data
through the convolution operation. Convolution of any signal that is combined
with another one produces a third signal that may reveal more information about
the signal than the original signal itself [6].

In 1990, LeCun et al. [16] published the seminal paper fundamenting the
modern framework of a CNN, and later improved it in [15]. The specific hyper-
parameters of CNN are [22]:

– Number of convolutional layers. This layer is the primary building block of
a convolutional neural network, which determines the output of associated.

– Number of pooling layers. The primary function of the Pool layer is to
progressively reduce the spatial size (i.e., width and height) of the input
volume. Typically, we use a pool size of 2 × 2, although deeper CNNs that
use larger input images (> 200 pixels) may use a 3 × 3 pool size early in the
network architecture.

– Step size handled by the stride. It is the number of pixels to move to define
the local receptive field for a filter–a stride of 1 means to move across and
down a single pixel. The value of stride should not be too small or too large,
and it is almost always symmetric in the dimensions of height and width.

A convolutional neural network, also known as ConvNet or CNN, is a variant
of the artificial neural network, which specializes in emulating functionality and
behavior of our visual cortex [21]. CNN has produced excellent results in fields
like image classification [15], speech recognition [9] and object identification [7].

Typical CNN architectures stack a few convolutional layers (each one gener-
ally followed by a ReLU layer), then a pooling layer, then another few convolu-
tional layers (+ReLU), then another pooling layer, and so on [8].

When CNNs are applied to images, consecutive convolutional layers learn
progressively abstract features. Figure 1 depicts this process, where the first
layers take care of extracting characteristics such as the edges or corners of an
image. Once these edges are detected, they are used to detect shapes in the
subsequent layers. When the shapes are detected, high-level characteristics are
detected, such as a wheel in an image where a car appears. The last layers are
fully connected and take care of giving a prediction from these last extracted
characteristics.

2 Materials and methods

2.1 Dataset

The Dogs vs. Cats dataset was originally collected by Microsoft and consists of
more than 3 million images, of which 25,000 have been publicly released1. It is

1 https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765
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Fig. 1. Example of a convolutional neural network.

worth mentioning that there is a smaller dataset (3,000 images) derived from
this one, that is more commonly used in the literature.

Data are the images, which are stored in 2 directories, one for the pictures
of cats and the other one for pictures of dogs. The dataset is balanced, i.e., it
has the same number of images of cats and dogs. The goal is to build a machine
learning algorithm capable of correctly detecting the animal (dog or cat) in the
images.

2.2 Experimental setup

The CNN model proposed in this paper is used to predict the correct class of each
item in the dataset. The data were split into 70 % training, 15 % for validation,
and 15 % for testing. The total number of convolutional layers is 3*stacks. Each
stack has a convolutional layer, a batch normalization layer, and a ReLU layer.
The image size is 150∗150∗3, where 150∗150 is the size in pixels, and the number
3 represents the depth of the image.

The hyperparameter configuration was:

– Learning rate: 0.00001,
– Number of epochs: 30,
– Steps per epoch: 70,
– Loss function: Binary crossentropy,
– Activation functions: ReLU and Sigmoid.

The life cycle of a model provides the backbone for modeling a dataset. The
life cycle used in this work includes [20]:

1. Gather the dataset: download a zip file containing the dataset, unzip it and
discard the corrupt files.
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2. Split the dataset: divide the data set into three parts:
– Training set: the set of samples used to train the model.
– Validating set: the set of samples that we are going to use to adjust the

parameters of the classifier.
– Testing set: the set of samples that we will use only to evaluate the

performance of the classifier.

To the training set we assign 70 % of the images, to the validating 15 % and
to the testing 15 %. Train network: In this step, we define the architecture of our
network configuring each of its layers. We also configure the hyperparameters,
then compile the model and feed it with the training set. Evaluate: To verify
the result obtained in training, we use the confusion matrix and the ROC curve.
Make predictions: We provide a simple user interface so that the user can load
an image and test the prediction in a more intuitive way.

3 Results

We conducted experiments with the dataset to determine the behavior of each
optimizer. To test the performance of each optimizer in all the experiments, the
default settings of each hyperparameter were chosen. We have included an early
stopping in the training phase to stop the training loop after 5 iterations with no
improvement. Table 1 shows the main performance metrics on each optimizer.
Table 1 shows that the highest accuracy was achieved by the Adam optimizer,
while RMSprop was second with a small gap. SGD fall behind with a weak
accuracy.

Table 1. Model results.

Optimizer Loss Accuracy

SGD 0.6926 0.5053

RMSprop 0.4520 0.7868

Adam 0.4227 0.8017

Figure 2 shows the performance of each model in the training phase on the
training and validation subsets. We highlight that SGD stops training at epoch
12, according to the early stopping configuration. On the other side, RMSprop
and Adam continue the training until the 30 configured epochs. SGD validation
curve shows an erratic behavior, while RMSprop and Adam curves shows the
slope of the learning process.

The confusion matrix of each optimizer is presented in Figure 3. We can
notice that SGD has the lower performance, misclassifying most of the images.
On the other hand, RMSprop and Adam performed quite well in the classification
of cats and dogs.
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Fig. 2. Optimizers performance.

Figure 4 shows the graphical representation with normalized values of the
confusion matrix of each optimizer. In these plots the difference between the
correct classifications (top left and bottom right of each plot) against misclassi-
fications (bottom left and top right) is clear. For example, we can see that SGD
virtually classifies all the images as dogs, having a high rate with dog images
but a low rate classifying cat images.

In Figure 5 we can see the area under the curve (AUC) of the ROC curve
of each optimizer, computing the false-positive rate and the true-positive rate of
each model. The AUC measures how much the model is capable of distinguishing
between cats and dogs. We can notice the flattened curve in the SGD optimizer,
indicating a poor classification performance. The ROC curve for RMSprop and
Adam is similar, along with their AUC. Both optimizers performed well in the
classification task.
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SGD optimizer RMSprop optimizer Adam optimizer

Predicted value Predicted value Predicted value

Cat Dog Cat Dog Cat Dog

Cat 38 1838 Cat 1392 484 Cat 1624 252

Real

value Dog 18 1858 Dog 316 1560 Dog 492 1384

Fig. 3. Confusion matrix of each optimizer.

Fig. 4. Graphical representation of the confusion matrix.

4 Conclusions

Selecting an optimizer for training a neural network is a challenging task. The
role of an optimizer is to update the weight parameters so the network can
minimize the error or loss function, where the error is the difference of actual
value and the predicted value.
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Fig. 5. ROC curve of each optimizer.

In this work, we test three optimizers: SGD, RMSprop, and Adam, creating a
model for binary classification in the Dogs vs. Cats dataset. In our experiments,
the Adam optimizer obtained the best performance, according to the model’s
accuracy and the AUC of the ROC curve. This may be due to the fact that
Adam is an adaptative learning rate method, as it computes individual learning
rates for diferent parameters. Adam has also the best performance in terms of
speed of training.

Each optimizer has several parameters that have a direct impact on the
performance of the generated model. In a future work, we consider the tuning
of these parameters and using more and diverse optimizers.
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