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Data-Driven Bayesian Network Learning:
Towards a Bi-Objective Approach to Address

the Bias-Variance Decomposition

Vicente Josué Aguilera Rueda, Nicandro Cruz Ramı́rez,
Efrén Mezura Montes

Universidad Veracruzana,
Centro de Investigación en Inteligencia Artificial (CIIA),

Mexico

{vaguilera,ncruz,emezura}@uv.mx

Abstract. We present a novel bi-objective approach to address the
data-driven learning problem of Bayesian networks. Both the log-likelihood
and the complexity of each candidate Bayesian network are considered
as objectives to be optimized by our proposed algorithm named Non-
dominated Sorting Genetic Algorithm for learning Bayesian networks
(NS2BN) which is based on the well-known NSGA-II algorithm. The core
idea is to reduce the implicit selection bias-variance decomposition while
identifying a set of competitive models using both objectives. Numerical
results suggest that, in stark contrast to the single-objective approach,
our bi-objective approach is useful to find competitive Bayesian networks
with a balanced trade-off between accuracy and complexity.

Keywords: Bayesian networks, bias-variance, NSGA-II.

1 Introduction

A way to build a Bayesian Network (BN) is adopting a data-driven inductive
approach; in this case, the learning task is framed as a combinatorial optimization
problem with two components: a metric to assess the quality of each BN candi-
date, and a search procedure to move through the space of candidate networks.

In data-driven BN learning, it is common to implement metrics in the form of
a penalized log-likelihood (LL) function, as minimum description length (MDL).
While adding an edge to a BN never decreases the likelihood –and hence irrele-
vant arcs should be discarded– adding extra arcs leads to two main problems: the
overfitting problem and densely connected networks. To avoid complex networks,
a penalty term is used. However, complex networks may have a low LL score value
but overfit the model, while a high penalty term may incur in underfitting. Thus,
it is desirable to have networks with a suitable balance between the goodness of
fit (accuracy) and complexity.

Some researchers point out that the trade-off between accuracy and com-
plexity should be featured as a bi-objective problem [5, 11] however, to the best
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of our knowledge, estimation of those values has not been previously used in
a bi-objective approach for model selection in BN. Our work addresses this
combination. The remainder of this paper is structured as follows: Section 2 de-
scribes related work. In Section 3, background about BN, MDL and bi-objective
optimization problem are presented. In Section 4, our proposed algorithm is
described. Section 5 presents the experiments and discusses the results. The
concluding section summarizes the findings and gives an account for future work.

2 Related Work

There exist two main approaches to the use of crude MDL to learn BN: to find
the true model (that has given rise to the data), known as the gold-standard
network [8] and to find a model with a good trade-off between the accuracy
and complexity [6]. Accuracy in this context refers to the computation of the
log-likelihood of the data given a BN structure; it should not be confused with
classification accuracy (see Equation 1).

Cruz-Ramı́rez et al. [3], performed an exhaustive experiment with four-node
networks. Therefore, eventhough these results show how crude MDL produces
well-balanced models in terms of complexity and log-likelihood, those experi-
ments have a limited scope of four-node networks and they left for future work
to explore the search procedure.

Previous studies have addressed the BN model selection problem using evo-
lutionary algorithms, for instance, see [2, 13, 10]. However, none of them has
tackled the problem in a multi-objective way.

Lastly, the work of Ross and Zuviria [12] uses a multi-objective genetic
approach to induce dynamic BNs from data with a trade-off between likelihood
and complexity. This work is focused on the modeling of biological phenomena
that typically requires low-connectivity networks. However, to the best of our
knowledge, this work is the only one with multi-objective criteria learning.
Although, is in the context of dynamic BN.

In summary, the learning problem of BN using MDL as a metric has been
dealt with mainly as a single-objective problem. However, it is possible that one
objective tends to dominate the search procedure and will also add bias-variance
decomposition to the kind of result obtained.

3 Background

3.1 Bayesian Networks

A BN is a graphical model that represents a joint probability distribution over
a set of random variables {X1, . . . , Xn}. BNs are represented as a pair (G,Θ),
where the directed acyclic graph (DAG) is represented by G = (U,EG); U is the
set of nodes or random variables, and EG is the set of arcs that represent the
probabilistic relationship among these variables. The parents of Xi are denoted
PAi;Xi is independent of its non-descendant variables given its parents.
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Thus, Θ is a set of parameters which quantify the network. The joint prob-
ability distribution can be recovered from local conditional probability distribu-
tions as:

P (X1, . . . , Xn) =
∏n

i=1 P (xi|PAi).

3.2 Minimum Description Length

The crude definition of MDL [6] is of the form:

MDL = −logP (D|Θ) +
k

2
log n, (1)

k =

m∑
i=1

qi(ri − 1), (2)

where D is the dataset, Θ represents the parameters of the model, k is the
dimension of the model, and n is the sample size. The parameter Θ is the
corresponding local probability distribution for each node in the network. The
dimension of the model (k) is given by Equation 2.

For the case of Equation 2, m is the number of variables, qi is the number of
possible configurations of PAi;Xi and ri is the number of values of the variable.

The first term of Equation 1 measures the accuracy of the model (f1) and
the second term measures the complexity (f2). The complexity of a BN is
proportional to the number of arcs, as shows the Equation 2.

3.3 Multi-Objective Optimization Problem

According to Deb [4], a multi-objective optimization problem (MOOP) can be
seen as a search problem that aims to minimize or maximize two (or more)
objectives that are usually in conflict. Without loss of generality, a MOOP can
be defined as: ~f(~x) = [f1(~x), f2(~x), . . . , fl(~x)] where ~x = [x1, . . . , xn] ∈ Nn is an

n-variable decision vector, ~f is the set of objective functions to be minimized or
maximized, and l is the number of objectives.

According to this idea, the following definitions are provided: a) a solution
x1 dominates a solution x2 (denoted by x1 � x2) if the solution x1 is not worse
than x2 in all objectives and it is better than x2 in at least one objective. In
MOOPs there is not a single optimal solution, conversely, we can find a set of
solutions that have no other solution which dominates them when all objectives
are currently considered. Hence, the set of non-dominated solutions is called
Pareto optimal set, and the evaluations of each non-dominated solution in each
objective function are known as the Pareto front [4].

4 Non-Dominated sorting Genetic Algorithm (NSGA-II)

NSGA-II is a fast elitist multi-objective evolutionary algorithm proposed by Deb
et al. [4]. In NSGA-II the individuals are ordered into non-dominated sets called
fronts. A rank based on the number of the front is assigned to each individual.
To know how close an individual is to its neighbors, the crowding distance is
computed for each individual.
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Algorithm 1 NS2BN
1: G=0 {Generation}
2: Generate a population P of random solutions ~xi, ∀i, i = 1, . . . , POP SIZE
3: Repair cycles of each ~xi ∀i, i = 1, . . . , POP SIZE
4: Evaluate the fitness functions using the first and the second term of the Eq. 1 of each ~pi ∀i, i =

1, . . . , POP SIZE
5: while G ≤ Gmax do
6: Crate offspring population Q using: binary tournament selection, one-point crossover and bit

inversion mutation.
7: Repair cycles
8: Evaluate the fitness functions using the first and the second term of the Eq. 1 of each ~xi ∀i, i =

1, . . . , POP SIZE
9: Combine parents and offspring population R = P ∪Q

10: Sort using non-dominated criterio
11: Replacement
12: G = G + 1
13: end while

The selection of parents is performed by using a binary tournament based
on the rank and the crowding distance. The selected parents generate offsprings
through crossover and mutation operators.

The pseudocode of the proposed approach named Non-dominated Sorting
Genetic Algorithm for learning BN (NS2BN) is presented in Algorithm 1.

For the carried out of NS2BN: i) the representation of the individual is
adjacency matrix, and ii) a repair operator that replaces values randomly when
a cycle is identified.

5 Experiments and Results

5.1 Experimental Setup

This section presents the experimental setup. Firstly, we proposed four golden-
standard networks with 6-nodes and the following characteristics: i) two of them
with 8 arcs each one, and ii) two of them with 7 and 9 arcs, respectively; we call
them A RDP, B RDP, C LED, and D LED, accordingly. In the four networks,
all the random variables are binary, since this does not produce any qualitative
impact on results in comparison to non-binary variables [1]. Then, we generate
the datasets through these networks in instances of 1000, 5000, and 10000 cases.
The first two of these databases were generated using a random probability
distribution and the next two were generated with distribution p = 0.1 that
according to [1] changing the parameters to be high or low tends to produce
low-entropy distributions which have more potential for data compression.

Additionally, we include the following datasets: Asia that has 8-nodes and
8 arcs and Car Diagnosis that has 18-nodes and 20 arcs. Both networks were
tested using the dataset with 1000, 5000 and 1000 instances.

Ten independent runs were made by each algorithm per database, with
20, 000 evaluations. A single objective Genetic Algorithm [9] (GA) was carried
out for comparison propose. The individual representation consists of an adja-
cency matrix; the fitness function is the crude MDL, as described in the previous
subsection (3.2).
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In this algorithm, binary tournament parent selection, one-point crossover
and bit inversion mutation are employed. The GA finds a single network for each
execution, the network with the best MDL is chosen as the “genetic solution”,
meanwhile, in NS2BN the result of a run is a set of solutions with a variety
of accuracy and structural complexity measurements. To choose an overall best
solution from the Pareto front is scientifically invalid due to all the solutions are
equally desirables, and normally the decision corresponds to a high-level expert
knowledge in the modeling field.

In this work, to have a comparison between the multi-objective approach
and the single-objective approach, from the accumulated Pareto front of ten
executions, the solution nearest to a reference point which is (0, 0) is chosen. To
find this solution, all of them were normalized and the Euclidean distances were
computed between the reference point and each Pareto solution. The solution
with the shortest Euclidean distance is referred to as the “chosen solution” in
this work.

The experimentation is presented in two parts 1) the comparison against the
gold-standard network, the genetic solution and the chosen solution in terms
of the Kullback-Leibler divergence (KLD) computed as the log2 of the ratio of
gold-standard network/chosen solution or genetic solution, according to the case,
and 2) the analysis of the plots of the accumulated Pareto fronts.

The parameters setting employed by NS2BN and the GA were tuning empir-
ically. The parameters are the follows: POP ZIZE = 100, Gmax = 200, C = 0.9
and M = 0.3.

5.2 Results

Table 1 shows the results of the computation of the KLD. According to such
a test, there were in ten databases significant differences in favor of the chosen
solution that means that the chosen solution is closest to the gold-standard
network concerning the subjacent distribution.

Since the genetic algorithm is searching for the minimum value of MDL,
the genetic solutions show a minor MDL in sixteen databases. However, one of
the objectives is punished in those results. The Figures 1d to 1f show how the
genetic solution tends to choose solutions with a smaller log-likelihood but more
complex, a similar situation occurs in the Figures 1g to 1i where the genetic
algorithm chooses solutions less complex but with a worst log-likelihood value.

Regarding the sample size, Grünwald [6] points that crude MDL does not
work well when the sample size is small or moderate and Hastie et al. [7] point
out that a metric like crude MDL, in a finite sample, tends to select models
less complex. However, these results agree with Grünwald and in contrast to
Hastie’s et al. our work, show a bias when the sample size is greater in the
Genetic Solution, which is used a weighted sum, since this solution tends to
select a more complex model (see Figures 1b, 1c, 1e, 1f, 2b, 2c, 2e and 2f).

The experiments generated by a low-entropy distribution show, as was pointed
by Cruz-Ramı́rez et al. [3] that the presence of noise rate affects the behavior
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Fig. 1. Accumulated Pareto front of the twelve first databases with 6-nodes with
random probability distribution (RPD) and low-entropy probability distribution
(LED). Gray stars - the accumulated front obtained by five runs of NSGA-II.
Blue triangle - the golden-standard network. Pink square - the genetic solution
and then green circle - the chosen solution from the Pareto front.

of MLD which tends to prefer the less complex models, even a network with
no arcs.
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Fig. 2. Accumulated Pareto front of the well-known benchmark databases with
the different number of cases. Gray stars - the accumulated front obtained by five
runs of NSGA-II. Blue triangle - the golden-standard network. Pink square - the
genetic solution and the green circle - the chosen solution from the Pareto front.

However, these results show, independent of the sample size, solutions with
better values in both terms (see Figures 1g to 1l).

6 Conclusion and Future Work

In this paper, a novel evolutionary bi-objective optimization approach for model
selection of BN was presented.

The accuracy and the complexity, which are related to bias and variance
respectively, were adopted as the objectives to be optimized to obtain models
with an acceptable generalization performance. A set of trade-off solutions was
obtained per database. A solution nearest to the origin was chosen as a com-
petitive solution with a suitable trade-off between the objectives. This chosen
solution was compared with a single-objective solution. The chosen solution
achieved competitive results, especially in the complexity. It is important to
note, that one of the main advantages of this approach is the set of trade-off
solutions and that the selection of a model can be a high-level decision and
must be performed by a domain expert of the modeling phenomenon. Additional
advantages are that the proposed method can be applied to a database from
different domains and can be extended to other models. As future work, different
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Table 1. Kullback-Leibler divergence computed between the gold-standard
network with the genetic search solution and the gold-standard network with
the chosen solution of the Pareto front. Values in boldface mean the best value
found.

Golden-network Genetic search Chosen solution

A RPD. 1000 cases 0.006256036 0.000412874

A RPD. 5000 cases 0.000735484 0.000166667

A RPD. 10000 cases 0.000622825 0.010558429

B RPD. 1000 cases 0.5008542 0.512832286

B RPD. 5000 cases 0.50817743 0.527715617

B RPD. 10000 cases 0.501635069 0.506660672

C LED. 1000 cases 0.006859061 0.000558415

C LED. 5000 cases 0.001254388 8.84927E-06

C LED. 10000 cases 0.000630321 0.000231126

D LED. 1000 cases 0.005505678 0.001674059

D LED. 5000 cases 0.001196043 0.0007695

D LED. 10000 cases 0.000561088 0.000529102

Asia 1000 cases 0.184669176 0.183903387

Asia 5000 cases 0.279944777 0.277977466

Asia 10000 cases 0.272191288 0.262362486

Car diagnosis 1000 cases 0.161505741 0.278079726

Car diagnosis 5000 cases 0.160725004 0.192815203

Car diagnosis 10000 cases 0.200548739 0.223971025

methods can be used to evaluate accuracy and complexity. Also, alternatives to
reduce the computational cost of the algorithm can be included.
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Abstract. In this paper we propose a digit-based text-dependent speaker
verification system (SVS) in Spanish. The system uses word level Hidden
Markov Models (HMM) as classifiers and Frequency Cepstral Coeffi-
cients (MFCC) with Cepstral Mean Subtraction as features. The system
was developed considering a gender independent Universal Background
Model (UBM) within an HMM-UBM framework. The training data set
was pooled with both genders equally represented for the UBM. A Tar-
get Speaker Model (TSM) was generated using Maximum A Posteriori
(MAP) to adapt the UBM’s parameters to the acoustic characteristics of
the target speakers. Every target speaker (TS) has a 4 digits password.
Robustness of the system was tested using adaptive noise cancellation as
a speech enhancement scheme; the speech signals were corrupted with
additive white Gaussian noise (AWGN) at different values of signal to
noise ratio. Generation of a digit-database, which we have named as
BIOMEX-DB, is described. The main contribution of this work is a ro-
bust SVS in Spanish language tested with 4-digits passwords, which can
be easily adapted to different lengths or text-prompted mode. Obtained
results showed an equal error rate (EER) in the range of 1.0567-1.4465
% when 50 subjects in the database were considered.

Keywords: speaker verification, HMM, voice biometrics, universal back-
ground model, speaker adaptation, voice database.

1 Introduction

Nowadays there is an increasing number of applications that require verification
of a user’s identity, such as access to facilities, internet applications, or bank
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services. In that sense, biometric systems are widely used as a viable solution
for most security problems.

A biometric modality with a good balance of properties within the universe of
desired conditions is the use of voice signals, known as speaker verification, which
constitutes an active research area. Many approaches focused on attacking the
inherent problems of this biometric modality have been recently proposed [11].
In a speaker verification task there are two relevant modalities: text dependent
and text independent. In the first scheme, the words spoken by a speaker for
recognition are limited to a specific vocabulary, in the second approximation
there is no limitation in the words that can be uttered [17]. There is an increasing
interest to capitalize on the advantages of text-dependent systems while allowing
for the flexibility of the text-independent domain [4]. A review of text dependent
modality can be consulted in [6].

HMM and Gaussian Mixed Models (GMM) have been widely used in speaker
recognition approaches. In recent years these techniques have been used to obtain
statistics for a new representation known as i-vector feature extraction [19,
20]. In [16] HMM’s are used for data segmentation and the resulting statistics
are incorporated in a system based on Joint Factor Analysis (JFA). In other
works these models have been used as classifiers aiming to capture the temporal
information of voice signals and improve accuracy through different types of
UBMs [14, 13]. In [7] a performance comparison is made between HMM, GMM
and i-vector showing competent results in different scenarios. Another important
aspect of speaker recognition is the choice of a feature extraction technique that
improves accuracy and captures the information of the speech signal. Several
techniques for representing spectral features, such as Linear predictive cepstral
coefficients (LPCC), Perceptual Linear Predictive (PLP) and Mel Frequency
Cepstral Coefficients (MFCC) have been used for different speech processing
tasks, mainly speech and speaker recognition. Reference [8] presents details on
the use of LPC and MFCC with several classifiers for speech recognition. In [3]
the performance of a HMM based speech recognition system trained with noisy
speech samples using several spectral feature extraction techniques is compared.
In the field of speaker recognition, spectral features have a widespread use, in
[1] spectral features are used to train several classification models for a text
independent identification task.

In this work, a HMM-based speaker verification system using a single 4 digits
password in Spanish is presented. Verification is done through the matching
of the spectral characteristics of the voice using Universal Background Models
(UBM) and Target Speaker Models (TSM), obtaining a score based on Log
Likelihood Ratio (LLR), testing speaker correct (SC) and Impostor correct
(IC) for the assessment of identity verification. The MFCC feature extraction
technique was used together with the Delta (first derivative) and Delta-Delta
(second derivative) coefficients. Cepstral Mean Normalization (CMN) technique
was applied to compensate for spectral effects caused by the recording channel.
Each HMM is trained at word level representing a digit, so there is a set of
UBMs composed of the 10 models plus 1 silence model, and a target-speaker set
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using the same scheme. Robustness of the system in several noise conditions was
tested using an adaptive LMS filter approach.

Results are analyzed using ROC (Receiver Operating Characteristic) curves,
presenting an equal error rate (EER) in the range of 1.0567-1.4465 % with a
population of 50 subjects. The rest of the paper is organized as follows: section 2
describes theoretical concepts; section 3 presents a description of the BIOMEX-
DB database which was generated for this experiment. In section 4, experimental
development and performed testing on the SVS are explained. Tests results are
described in section 5 and concluding remarks are presented in section 6.

2 Speaker Verification System

Fig. 1. Speaker verification process.

Figure 1 shows the block diagram of the SVS indicating the enrollment and
verification stages. Feature extraction consists of the generation of MFCC [5],
incorporating Delta and Delta-Delta in the feature vector. The Enrollment stage
consists of training of HMM-based UBMs using the Baum-Welch algorithm for
parameter estimation[18], and after a MAP adaptation TSMs are generated.
In the verification stage, LLR is calculated to qualify the match between the
features of a test speech sample and both UBM and TSM [12]. Log likelihood
ratio is defined in Equation 1.

Λ(X) = log p(X|λS)− log p(X|λUBM ), (1)

where p(X|λS) is the likelihood that the feature vector X has been generated by
the speaker model λS , while p(X|λUBM ) is the likelihood that X was generated
by the UBM. Verification is then carried out by comparing the LLR with a
predetermined threshold and based on that comparison the SVS accepts or
rejects the claimed identity of a test speaker.

2.1 Hidden Markov Models (HMM)

Figure 2 shows a block diagram of the HMM structure used in this work. An
HMM represents a doubly embedded stochastic dynamical process through a set
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Fig. 2. Hidden Markov Model (HMM) representation.

of states S : {S1, S1, ..., SN}, a set of possible observations O : {O1, O1, ..., OM},
a transition probability matrix A = [Aij ], and an output probability distribution
B = [Bij ]. The stochastic nature of HMMs is contained in the transition of
states defined in the transition matrix A, and in generation of the observations
B, being both probabilistic events [10]. HMM have been widely used in speech
processing due to the ability to capture temporal information of the speech,
taking into account its non-stationary nature. In this work, the HTK (Hidden
Markov Model Toolkit) software tools [18] were used to build the UBMs and
TSMs conforming the SVS. Parameter estimation and frame alignment in HMM
were implemented using Baum-Welch and Viterbi algorithms respectively [18].

2.2 Speaker Adaptation

A TSM contains the acoustic characteristics of a TS. The process followed in
this work was the adaptation of the parameters of previously trained UBMs with
the target speaker’s speech information. MAP parameter adaptation is defined
according to equation 2:

ûjm =
Njm

Njm + τ
ujm +

τ

Njm + τ
ujm, (2)

where ûjm is the adapted mean vector, ujm is the mean vector of the adaptation
data and ujm is the mean vector of the speaker independent model. Njm is the
likelihood that the adaptation data was generated by the Gaussian component
m in the j state, while τ is the weight of the adaptation data. In [2] it is shown
that adapting other parameters, mean not included, decreases the accuracy of an
SVS, furthermore, it is also shown that a very high value of τ can also decrease
the accuracy. In this work, the TSMs were generated by adapting only the means,
with τ = 12 established by experimentation.

3 BIOMEX-DB Database Generation

The experiments described in this work were carried out with a database created
specifically for biometric purposes, focused in digit-based text dependent speaker
verification in Spanish language. The speech signals were obtained from 51
volunteers, 26 men and 25 women to ensure a balanced representation of both
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genders and voice variability. Table 1 shows the demographic distribution of
volunteers within the database.

Table 1. Demographic distribution of subjects in the database.

Gender
Age Male Female

Less than 21 3 2

21 - 30 18 14

31 - 40 2 6

41 - 50 1 1

51 - 60 0 2

Older than 60 2 0

The speech database consists of audio files containing strings of digits ran-
domly ordered with a short segment of silence between utterances. The speech
database is divided into two parts: The first part consists of 10 strings of 10
digits each, giving a total number of 5100 digits pronounced by 51 subjects.
The second part consists of 10 strings of 4 digits each. Each string is consid-
ered a 4 digits password assigned to a specific speaker. Similarly, each digit is
pronounced once per string. All speech samples of each speaker were recorded
consecutively in 15-20 minutes sessions. The recording was carried out with
a microphone Sennheiser model MD 421-II connected to a deskstop computer
through a Yamaha amplifier model MG06X. A MATLAB script was used to
display the digits to be pronounced and to generate the transcripts of each audio
file. The audio signals were recorded with a sampling frequency of 16 KHz, a
resolution of 16 bits per sample, and stored in wav format.

4 Experimental Setup

The evaluation was conducted using two gender balanced population sizes of 40
and 50 speakers. These population sizes were chosen according to the maximum
amount of speakers available in the database and to evaluate the impact of
different population sizes in the results. With a population of 40 speakers, 24
were employed to train the UBM, 8 target speakers and 8 impostors. With
50 speakers, 30 were employed to train the UBM, 10 target speakers and 10
impostors, using gender balance in all cases. The MFCC features were extracted
using signal framing of 25 ms Hamming windows with an overlapping of 10 ms.
The number of states of the HMM was the same in every UBM and TSM models,
with one Gaussian component per state. Three cases were analyzed according
to the number of states in the HMM structure: 5, 8 and 12 states. Testing was
carried out using a jack-knife-like iterative scheme [9].

Robustness of the system in the presence of noise was tested through a series
of experiments in which the speech signals were corrupted with additive white
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Gaussian noise at different signal-to-noise values. For that purpose, a normalized
least mean square (NLMS) filter was incorporated [15].

Fig. 3. Speaker Verification results; ROC curves.

5 Results and Discussion

Fig. 3 shows the ROC curves obtained with two population cases, 40 and 50
subjects, and three different HMM models with 5, 8 and 12 states. This figure
has been zoomed to the upper left corner in order to highlight details. These
results are concentrated in table 2 showing the evaluation parameters EER and
Area under the Curve (AUC).

The obtained EER is located in the ranges 0.2516-0.4353 % and 1.0567-1.4465
% for the cases of 40 and 50 speakers, respectively. Results obtained in the
proposed work are comparable with those presented in recent works, although
differences in population sizes, corpora, training conditions and language do not
allow a direct evaluation. In [13] the authors report HMM-UBM and GMM-UBM
systems with an EER ranging from 7.12 to 0.79 %.

Reference [7] presents different HMM and GMM systems with an EER in the
range 9.94-0.59 %. In [14], HMM-UBM and GMM-UBM systems with an EER
of 5.56-0.009 % are reported. Results show that the more states the HMMs
have the better the verification results are, since there are more states the
acoustic modeling improves, however 12 states HMMs don’t show significant
improvements in comparison with 8 states because there isn’t enough training
data to further improve the results.

A trade off between the computational cost for both training and testing and
the number of states must be take into consideration, more states increases the
computational cost, therefore the 8 states HMMs were considered good choices.
It is evident that the best results come from the 40 subjects population, it is
well documented that performance decreases with big populations.
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Table 2. Speaker verification results; EER and AUC.

Population
HMM states P=40 P=50

N EER % AUC EER % AUC

5 0.4353 0.9995 1.4465 0.9943

8 0.2992 0.9998 1.1378 0.9951

12 0.2516 0.9999 1.0567 0.9952

Table 3 shows the values of EER and AUC obtained when the speech signals
are corrupted with AWGN at the following SNR values: -10 dB, -5 DB, and 0
dB, using a HMM structure of 8 states. As expected, the system performance
decreases compared to the noiseless case, however, the obtained EER lies in the
range of 0.7467-0.8746 % which it still a satisfactory system behavior.

Table 3. EER and AUC results with signals corrupted by AWGN; N=8 HMM states,
P=40 subjects.

SNR (dB) EER (%) AUC

Noiseless 0.2992 0.9999

-10 0.7467 0.9997

-5 0.8107 0.9997

0 0.8746 0.9997

6 Conclusions

A HMM-UBM based speaker verification system using a four-digit password
pronounced in Spanish language, has been presented. Several experiments were
carried out with different number of emitting states and two population sizes: 40
and 50 speakers. The more emitting states the better obtained accuracy, however,
the training time increases and more computational resources are needed.

The experiments showed that the best results in terms of EER, AUC, and
computational cost considerations were obtained with a HMM structure of 8
states. This structure was further tested in noise conditions adding white Gaus-
sian noise at several SNR values, showing good noise tolerance. Results showed
a degradation on EER from 0.2992 % without noise to 0.8746 % with a SNR=0
dB which corresponds to a noise power level in the same magnitude of the voice
signal. In practical applications is not possible to operate in noiseless environ-
ments, so adaptive filtering is an affordable alternative to improve the robustness
of a HMM-UBM based SVS. Additional experiments with real and typical noise
conditions are currently in progress. In conclusion, the system showed high
accuracy to discriminate between correct target speakers and impostors.
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Abstract. An important characteristic of the Multi-objective Optimiza-
tion Problems (MOPs) is that their solution sets typically form a (k−1)-
dimensional object where k is the number of objectives involved in the
MOP. Thus, it is only possible to approximate the entire set of interest
for a relatively few numbers of objectives (say, k = 3 or 4). In this
work, we address the numerical treatment of MOPs with more than four
objectives which are termed as Many Objective Optimization Problems
(MaOPs). Such problems have recently caught the interest in the indus-
try as the decision-making processes are getting more and more complex.
The recently proposed Pareto Explorer (PE) method raises as a solution
for the MaOPs, it is conceived as a global/local exploration tool which
consists of two principal phases: obtaining a global optimal solution for
a given MaOP, and the local exploration of optimal solutions based on
the preferences of a decision-maker. In this work, we demonstrate the
effectiveness of PE for solving real-world applications.

Keywords: many objective optimization, interactive method, decision
making, continuation method.

1 Introduction

In many applications, several objectives have to be optimized concurrently lead-
ing to a multi-objective optimization problem (MOP). Due to the increasing
complexity of practical problems, decision-making processes are getting more
and more sophisticated. Motivated by the advances in the design of algorithms
for the numerical treatment of MOPs [13] with few objectives and their huge
success in applications, there is a recent trend to include more objectives into the
optimization process. Due to this reason, MOPs with more than four objectives
are often termed many objective problems (MaOPs) in the literature as they re-
quire a different numerical treatment than problems with two to four objectives.

However, there exist real-world problems where the decision-maker (DM) has
some knowledge about the problem or she/he wants to obtain optimal solutions
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with specific characteristics instead of a vast set of alternatives. Reference point
methods are useful for this scenario, where the idea is to get the closest solution
to a given vector, usually infeasible, which is a guess of the DM. This kind of
methods, where the DM has active participation in the solution process, are
called interactive methods, and they differ from each other according to what
type of information they ask the DM [10].

We can find different alternatives which consider only one reference point to
get a solution, some of them include reference point method [17], light beam
search [8], GUESS [3], and even the r-NSGA-II [4], which can work with a set
of points. On the other hand, the learning-oriented methods (a different class of
interactive methods), exploit the preferences of the DM to direct the search, and
reduce the number of solutions to consider. Such methods are useful when the
set of optimal solutions is huge, for example, for many-objective optimization
problems. A wide variety of these interactive methods have been developed [2],
for example, Pareto Navigator [5], NIMBUS [12], and Nautilus [11].

Recently, continuation methods have been used to solve the multiobjec-
tive optimization problem. These methods have the advantage that they move
through the Pareto front. To achieve this, we need an initial optimal solution,
starting from this point we compute a predictor, which is a movement according
to specific criteria, and then with a corrector we obtain a new optimal solution.
The change both in the predictor as in the corrector, gives rise to different
methods as they are Hillermeier method [7], Pareto Tracer [9], and Zigzag [16].

The method used this paper, called Pareto Explorer, is a continuation method
that was recently proposed and which takes into account the preferences of the
DM to calculate the predictor. It is in spirit an interactive method and even
more. Here we show how to use PE to solve real world applications.

2 Background

A continuous multi-objective optimization problems (MOP) is mathematically
expressed as:

min
x∈D

F (x) = [f1(x), . . . , fk(x)]T , (1)

where D ⊂ Rn is the domain and F : D ⊂ Rn → Rk is called the objective
function, where k is the number of objectives and n is the number of variables.

The optimality of an MOP is defined by the concept of strict dominance. Let
v, w ∈ Rk, the vector v is less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k};
the relation ≤p is defined analogously. A vector y ∈ D is dominated by a vector
x ∈ D (x ≺ y) with respect to (1) if F (x) ≤p F (y) and F (x) 6= F (y), else y is
called non-dominated by x. A point x∗ ∈ Rn is Pareto optimal to (1) if there
is no y ∈ D that dominates x. The set of all the Pareto optimal points PD is
called the Pareto set and its image F (PD) is called the Pareto front. Typically,
i.e., under certain mild smoothness assumption on the model, both Pareto set
and front form at least locally (k − 1)-dimensional objects.
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2.1 Pareto Tracer

Here we briefly state the core elements of PT for unconstrained problems, for
details including constraint handling we refer to [9].

In [7] we find a continuation method for the MOPs context by considering
F̂ : Rn+k → Rn+1:

F̂ (x, α) =

(∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
= 0. (2)

The set of KKT points of (1) is contained in the zero set of F̂ which motivates
the continuation along F̂−1(0).

The idea of Pareto Tracer [9] is to separate the decision and weight space:

F̂ ′(x, α)

(
ν
µ

)
=

(∑k
i=1 αi∇2fi(x) ∇f1(x) . . . ∇fk(x)

0 1 . . . 1

)(
ν
µ

)
. (3)

By the second equation of (3) we have that
∑k
i=1 µi = 0, and it is possible

to find a relationship between ν and µ, i.e., a relationship between the objective
space and the variable space:

νµ = −W−1α JTµ, (4)

whereWα :=
∑k
i=1 αi∇2fi(x) ∈ Rn and J = J(x) = (∇f1(x)T , . . . ,∇fk(x)T )T ∈

Rk×n. Finally, given a direction d ∈ Rk in objective space such that Jνµ = d,
this vector νµ can be obtained with the vector µd that solves:(

−JW−1α JT

1 . . . 1

)
µd =

(
d
0

)
. (5)

If the rank of J is k− 1, we can compute the set of tangent vectors via a QR
factorization of α, i.e. α = QR. Let Q2 denote the matrix formed by the last
k− 1 columns vectors of Q, this matrix is an orthonormal basis of the linearized
Pareto front at F (x).

3 Pareto Explorer

In case the number k of objective is too high, it is not possible to compute a
suitable finite size approximation of the entire solution set any more. Instead,
the Pareto Explorer [14] aims to find a solution in cooperation with the DM in
two steps:

Step 1 Compute a solution x0 of the MaOP.
Step 2 Explore the Pareto landscape around x0 via performing movements into

user specified directions.
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Step 1 can be performed via a global heuristic such as an evolutionary reference
point method. For Step 2, the above described PT has been adapted in [14] that
allows to perform best fit movement along the Pareto set/front in directions
defined in decision, objective, and weight space. The key for this is the fact that
the tangent spaces of both the Pareto set at x as well as the Pareto front at
F (x) can be computed for every regular solution x which follows by the above
discussion (computation of the predictor for PT). By doing so, Step 2 allows for
a fine-tuning of the initial solution x0 from Step 1.

Let dk ∈ Rk be a given direction, if x is a solution of (1) with its corresponding
α vector, then the best direction to move the point F (x) on the Pareto front,
according dk, is given by the orthogonal projection of dk on the linearization of
the Pareto front at the point F (x) i.e:

d = Q2Q
T
2 dk, (6)

where Q2 are the last k−1 columns of the QR factorization of α. We consider the
normalization of d, i.e. d = d/‖d‖ and we can now compute the desired vector
νd ∈ Rn such that Jνd = d using (4) and (5).

The normalization of d is useful in order to compute the step length t for the
predictor, if we want that, for two consecutive solutions, ‖F (xi)−F (xi+1)‖ ≈ τ ,
then t is given by:

t =
τ

‖Jνd‖
. (7)

The corrector is, as in the case of the Pareto Tracer, given by the Newton
method for MOPs [6].

Figure 1 shows a hypothetical example for a best fit movement along the
Pareto front from the image F (xi) at the current iterate xi. Hereby, dy ∈ Rk

denotes the desired direction in objective space specified by the DM, and d
(i)
y ∈

Rk the direction projected to the linearized Pareto front at F (xi). The projected

direction d
(i)
y is used to perform a best fit movement along the Pareto front of

the problem.

4 Applications

In this section, we illustrate the efficiency of our method via two real world
applications, the industrial laundering and the plastic injection molding (PIM).

4.1 Industrial Laundering

The laundering process is influenced by the four parameters temperature, chem-
istry (amount of cleaner), time and mechanics (speed of rotation), which is
described by Sinners’ Circle [15]. These laundries are capable of washing up
to 30 tons of laundry per day. Consequently, it is of great interest to increase
the efficiency, which is beneficial both for ecological as well as economic reasons.
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Fig. 1. Best fit direction d
(i)
y for a given direction dy in objective space for the

Pareto Explorer.

The model was generated by fitting quadratic Ansatz functions to measure-
ments. The decision variables are the temperature of the water(x1), the amount
of washing detergents (x2), the washing time (x3) and the rotating speed of the
laundry (x4). Thirteen of the objectives are related to the cleaning of specific
types of contamination, i.e., f1 tof13 represent the effectiveness on: wool grease
in cotton, wool grease in polyester, red in cotton, sebum in cotton, sebum in
polyester, curry in cotton, motor oil in cotton, petroleum in cotton, blood in
cotton, egg in cotton, starch in cotton, cocoa, and vegetable grease, respectively;
while the 14th objective is related to the negative of the cost. All parameters are
normalized with the reference point being at (0, 0, 0, 0). The degree of cleaning
varies between 0 (no cleaning) and 100 (perfect cleaning). This leads the following
model:

min
x∈R4

F (x) = [f1(x), . . . , f14(x)]T ,

s.t −1.5 ≤ xi ≤ 1.5, i = 1, 2, 4
0 ≤ x3 ≤ 1.5.

(8)

We used Pareto Explorer to solve the problem of the washing machine (for
more details see [14]). For this approach we define the direction in objective
space as dk = −e14, i.e. we want to reduce as much as possible the value of the
14th function, which is the cost function. We took as initial point the optimal
vector x0 = (1.0429, 0.8521, 1.3622, 1.5000) and f14(x0) = 9.5637. We obtained
such a point, after applying the Newton method at the vector formed by the
middle value for each variable.

In order to view more easily the obtained results, we introduce graphs which
represent optimal solutions as polygons inscribed in the unit circle. In all cases,
the center of the circle depicts the best values for each objective function. Then,
the more a solution is far to the center, the best is its value. The first objective
function is in the line which goes from the point (0, 0) to the point (1, 0), the
rest of the objective functions are set in the counter-clockwise direction.
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The result obtained by the Pareto Explorer is in Figure 2a (left), the method
did 110 iterations and we show the solution for the initial point, 27th iteration,
55th iteration, and the final result. We can see that there is a reduction of the
value for the function f14 until reach the best value. The values of f14 and the
points considered in Figure 2a are:

– x0 = (1.0429, 0.8521, 1.3622, 1.5000), f14(x0) = 9.5637,
– x27 = (1.0995,−0.5341, 1.5000, 1.5000), f14(x27) = −4.2412,
– x55 = (0.7417,−1.2346, 1.5000, 1.5000), f14(x55) = −11.6041,
– x110 = (−1.4718,−1.5000, 1.5000, 1.5000), f14(x110) = −16.5000.

4.2 Plastic Injection Molding

The parameters we consider are the melt temperature (Tmelt), the packing time
(tpack), the packing pressure (Ppack) and the cooling time (tcool). While the
seven objectives are related to the quality and productivity of the PIM process.
Cosmetic characteristics are measured by the warpage (f1) in the product,
shrinkage (f2) and sink marks (f3). Functional properties are represented by
residual stresses such as Von Mises (f4) and shear stresses (f5). Productivity
is measured by the cycle time (f6) and clamping force (f7). Commonly, only
between two and four of these objectives are considered in other works (for more
details see [1]).

As case study we use in this work the design of a particular plastic gear. The
model (obtained by a surrogate model) is the following:

min
x∈R4

F (x) = [f1(x), . . . , f7(x)]T ,

s.t 190 ≤ x1 ≤ 230,
3 ≤ x2 ≤ 5,
60 ≤ x3 ≤ 100,
8 ≤ x4 ≤ 14.

(9)

Here we consider the seven described objectives and as initial solution we
chose x0 = (210.00, 4.00, 80.00, 11.00)T . Again, it is the middle point for each
variable in the considered range. For the demonstration of Step 2 of the PE, we
use the scenario in which we want to minimize the functions f1, f5, and f6 at
the same time, i.e., the direction is dy = (−1, 0, 0, 0,−1,−1, 0)T with τ = 0.01.

We can see in Figure 2b that the functions f1 and f6 are directly in conflict,
while f5 the value depends of both functions. At the end of the optimization
process, we obtain the best value for f6 and the worst value for f1; for the case
of f5 the initial and the final values are similar, but along the steps such value
has a lot of variation. Notice that, the result for this scenario is almost the same
than the previous one.

As it can be seen, the movement has been performed according to the desired
direction. We have presented here the entire path of solutions, however, in a real
decision-making process, the DM can of course chose at any time either to accept
a computed candidate solution, or to change the direction in which the steering
has to be performed.
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Table 1. Model values (FM ) against the simulated values FS for the PIM.

Initial Configuration

x0 210.0000 4.0000 80.0000 11.0000

FS(x0) 0.2016 5.6565 9.7470 0.0717 0.8690 20.1000 11.9460

FM (x0) 0.2040 5.7271 9.7329 0.0713 0.8774 20.1000 11.8221

Final Configuration

x212 213.3452 3.3421 60.0000 9.6950

FS(x212) 0.2437 6.5210 9.1729 0.0772 1.0300 18.1371 7.9492

FM (x212) 0.2419 6.4289 9.6057 0.0770 0.9199 18.1371 11.7847
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f3

f4f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

Initial
Quarter
Middle
Final

(a) Laundry Problem

f1
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f3

f4

f5

f6

f7

Initial
Quarter
Middle
Final

(b) PIM problem

Fig. 2. Graphical results.

5 Conclusions and Future Work

In this paper, we present an overview of how to use the Pareto Explorer, a
global/local exploration tool for the effective numerical treatment of many ob-
jective optimization problems, to solve real world applications in the context of
the decision-making process. We use it because it is not possible to compute
a suitable finite size approximation of the entire Pareto set/front for problems
with many objectives. Instead, solutions are computed and presented to the DM
in a two stage approach, where he/she express the preferences as a direction
in objective space. We demonstrated the effectiveness and usefulness of this
method with two real-world applications. The use of applications is essential in
the context of interactive methods because making fair comparisons is not always
possible, due to the fact that each process requires different pieces of information.
Moreover, comparisons of the PE against other continuation methods is unfair,
as they try to approximate all the set of optimal solutions.

35

Pareto Explorer for Solving Real World Applications

Research in Computing Science 149(3), 2020ISSN 1870-4069



However, the applicability of PE is restricted to continuous MaOPs. As future
work, the adaptation of PE for problems with different smoothness assumptions
can be explored.
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No. 285599 and SEP Cinvestav project No. 231.
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8. Jaszkiewicz, A., S lowiński, R.: The ‘light beam search’approach–an overview of
methodology applications. European Journal of Operational Research 113(2), 300–
314 (1999)

9. Mart́ın, A., Schütze, O.: Pareto tracer: a predictor-corrector method for multi-
objective optimization problems. Engineering Optimization 50(3), 516–536 (2018)

10. Miettinen, K.: Nonlinear multiobjective optimization, vol. 12. Springer (1999)
11. Miettinen, K., Eskelinen, P., Ruiz, F., Luque, M.: Nautilus method: An interactive

technique in multiobjective optimization based on the nadir point. European
Journal of Operational Research 206(2), 426–434 (2010)
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Abstract. This paper presents an experimental study of the compo-
nents of the Constrained Success History-Based Adaptive Differential
Evolution with Linear Population Size Reduction (C-LSHADE) algo-
rithm, to clarify its importance in generating good results by solving
two instances of mechatronic optimal design. C-LSHADE has four main
components: (1) a historical memory to adapt CR and F parameters,
(2) a mutation strategy called current-to-pbest, (3) a constraint handling
technique based on feasible rules; and (4) a function that linearly reduces
the population size over generations. Based on the final results, the linear
population size decreasing is the only component that, if omitted, affects
the performance of the algorithm.

Keywords: evolutionary algorithms, differential evolution, dimensional
synthesis, four-bar mechanism.

1 Introduction

A particular problem when designing mechatronic systems is finding the optimal
dimensional synthesis of mechanisms to perform a prescribed task in the best
possible way. The dimensional synthesis is responsible for specifying angular
positions and lengths of each component to find solutions to problems of tra-
jectory, function or movement generation to established specifications [4]. Such
problem is solved by treating it as a numerical optimization problem. There are
different optimization techniques, which could be classified as follows: traditional,
stochastic, statistical and modern or nontraditional techniques [6]. According to
the specialized literature, there is evidence of their usage to solve optimal design
problems: prebil performed a study to find the optimal dimensional synthesis of
a mechanism used as hydraulic support in the mining industry with the help
of a gradient method generalization called Adaptive Grid Refinement algorithm
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(AGR), where the distance between an arbitrary coupler point and a prescribed
path is minimized.

saravanan employed Multi-objective Genetic Algorithm (MOGA), Elitist
Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-objective Dif-
ferential Evolution (MODE) to find geometric dimensions of three end effectors,
optimal Pareto front and decrease the computational time involved in solving
the problem. They also make a comparison between the algorithms through
multi-objective performance measures and propose a software package for users
who wish to solve a design problem in any field of study. In [2], the authors
solved the synthesis of an Ackermann Steering Mechanism considering linkage
lengths and distribution of precision points as optimization parameters using
an algorithm inspired on the biological immune system of vertebrates. Zapata
in [14] added a constraint-handling mechanism to the algorithm LSHADE,
originally designed to solve unconstrained optimization problems, obtaining
very competitive results when solving mechanical design problems. However,
as C-LSHADE has different mechanisms within, it is unknown which ones are
responsible of such good performance.

Motivated by the above, this paper proposes an experimental study of the
C-LSHADE algorithm to clarify the importance of its components in obtaining
good results when solving two optimal design problems.

The document is organized as follows: Section 2 presents the dimensional
synthesis of a four-bar mechanism as well as case studies to be solved. Section
3 provides a description of the C-LSHADE algorithm. Section 4 shows the
experimental results achieved as their discussion. Finally, Section 5 presents
conclusions and future work lines.

2 Synthesis of Four-bar Linkage Mechanisms

Let be a four-bar mechanism type crank-rod-rocker shown in Figure 1, built by a
reference bar (r1), an input bar or crank (r2), connecting rod or coupler (r3) and
an output bar or rocker (r4). Two coordinate systems are established, the first
fixed to the real world (O1) and the second one for reference (O2), where (x0, y0)
is the distance between both systems, θ0 corresponds to the mechanism’s angle
movement according to the horizontal axis, angles θ1, θ2, θ3 and θ4 corresponding
to the four bars angles and C(rcx, rcy) point that defines the coupler position [8].

In this work, it is desired to obtain the optimal design of a four-bar mechanism
with the least possible error, that is, the coupler’s point C must proceed as
accurately as possible between the precision points Ci

d and the lowest distance
of calculated points Ci. The suggested objective function is as follows (Eq. 1):

error =

n∑
i=1

[(
Ci

xd − Ci
x

)2
+
(
Ci

yd − Ci
y

)2]
. (1)
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Fig. 1: Four-bar mechanism.

Subject to :

g1 (−→p ) = p1 + p2 − p3 − p4 ≤ 0,

g2 (−→p ) = p2 − p3 ≤ 0,

g3 (−→p ) = p3 − p4 ≤ 0,

g4 (−→p ) = p4 − p1 ≤ 0,

(2)

where Ci
d =

[
Ci

xd, C
i
yd

]T
is a precision point that defines the trajectory, a set of them

as Ω = {Ci
d|i ∈ N} where N is the total number of points and Ci =

[
Ci

x, C
i
y

]
, each

generated point expressed in accordance with the input bar and the set of bar lengths
and their parameters x0, y0 and θ0. For all case studies, 200 points Ci were considered.
The kinematics of the mechanism can be found in [14,?].

Eq. 3 is a representation of the design variables vector established to four-bar
mechanisms in this work:

−→p = [p1, p2, p3, p4, p5, p6, p7, p8, p9] ,

= [r1, r2, r3, r4, rcx, rcy, θ0, x0, y0] ,
(3)

where variables r1, r2, r3, r4 correspond to bar lengths, rcx, rcy correspond to coupler
position, θ0 movement angle of the mechanism concerning the horizontal axis of the
second system and O2(x0, y0) starting point of the latter.

2.1 Numerical Optimization Problems

This section presents the optimization problems to be solved. To identify them, each
problem was labeled with the capital letter M, associated with the word “mechanism”;
and an integer, problem’s index in the problem set enumeration.

(M01) Mechanism that follows a vertical linear path. Study case taken
from [10], the dimensional synthesis of a mechanism that follows a vertical linear path
defined by six points of precision with the least possible error is sought. The set of
precision points is:
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Ω = {(20, 20) , (20, 25) , (20, 30) , (20, 35) , (20, 40) , (20, 45)}. (4)

Design variables vector has nine dimensions (Eq. 3). The boundaries defined for each
one of them are:

r1, r2, r3, r4 ∈ [0, 60] ,

rcx, rcy, x0, y0 ∈ [−60, 60] ,

θ0 ∈ [0, 2π] .

(5)

The objective function to this single-objective problem is presented in Eq. 1, subject
to constraints shown in Eq. 2.

(M02) Mechanism that follows a path defined by five precision points.
Problem recovered from [14], the coupler must crosses through five points of precision
that form a curve. The precision points are:

Ω = {(3, 3) , (2.759, 3.363) , (2.372, 3.663) , (1.890, 3.862) , (1.355, 3.943)}. (6)

The design vector has nine variables (Eq. 3). The suggested upper and lower values
for each one of them are:

r1, r2, r3, r4 ∈ [0, 50] ,

rcx, rcy ∈ [−50, 50] ,

x0, y0, θ0 = 0.

(7)

The single-objective problem described in Eq. 1 is considered, subject to the constraints
shown in Eq. 2.

3 Constrained Success History Based Adaptive DE with
Linear Population Size Reduction

Proposed in [14], C-LSHADE is an algorithm focused on solving constrained optimiza-
tion problems. Its components were borrowed from previous proposals: the mutation
strategy was acquired from JADE [15], the historical memory 1.1 and the linear
population size reduction function were inherited from L-SHADE [13]. In order to solve
constrained problems, the Feasibility Rules constraint-handling technique was added
[1]. Its components are briefly detailed, but a full explanation can be found in [14].

Parameter control based on historical memory. A historical memory is
composed of MCR and MF structures of H dimensions for control parameters CR
and F . Parameters CRi and Fi of each individual are calculated by randomly selecting
a memory space with index ri ∈ [1, H] as well as using Eqs. 8 and 9 corresponding to
each one of them:

CRi =

{
0 if MCRri = ⊥
randni(MCRri , 0.1) otherwise,

(8)

Fi = randci (MFri , 0.1) , (9)
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where ⊥ = −1 is a threshold, randni a normal distribution and randci a Cauchy
distribution. If CRi exceeds its limits, it is biased to the nearest. Similarly, when Fi ≥ 1,
is truncated to 1 and if Fi ≤ 0 is regenerated. CRi,g and Fi that produced successful
solutions are stored in SCR and SF structures. In the same way, the difference between
objective functions values is stored in a similar structure. With the stored information,
the memory content is updated as indicated in the Algorithm 1.

Current-to-pbest mutation strategy. It includes information of the best in-
dividual with the aim to improve the convergence by varying the diversity of the
population; and a p parameter that limits the selection space to control the convergence
of the method during the search process. A representation of such operator is the
expressed in Eq. 10:

vi,g = xi,g + Fi ·
(
xpBestg

− xi,g
)

+ Fi · (xr1,g − xr2,g) , (10)

where xpBestg
is randomly selected from the 100p% of the population and p ∈ [0, 1].

Survivor Selection. C-LSHADE uses a constraint-handling technique called Fea-
siblility Rules, which is composed of the following three conditions:

– Between two infeasible individuals, the one with the smallest sum of constraint
violation (SVR or φx) is selected. SVR is expressed in Eq. 11.

– A feasible individual is preferable over an infeasible one.
– Between two feasible individuals, the one with the best objective function value is

preferred.

φx =

m∑
j=1

max(0, gj(x)). (11)

Update of historical memory spaces. The updating of the averages contained
in the memory is performed by Algorithm 1. In this, the index k ∈ [1, H] is associated
with the memory space to be updated. At the beginning k = 1, this is increased when
update memory is performed and restored if k > H. Moreover, meanWL is remitted
to the Lehmer’s weighted average (Eq. 12) where wk refers to the difference between
fitness functions values in order to provide information on the adaptation of parameters.

meanWL(SF ) =

∑|SF |
k=1 wk · S

2
F,k∑|SF |

k=1 wk · SF,k

, wk =
∆fx∑|SF |

k=1 ∆fx
,

∆fk = |f(uk,g)− f(xk,g)|.
(12)

Linear Population Size Reduction (LPSR). It linearly reduces the population
size with respect to the number of evaluations of the objective function, where its initial
size isNinit and at the end isNmin. The population size for each generation is calculated
according to Eq. 13:

NPG+1 = round

[(
Nmin −Ninit

MAX NFE

)]
∗NFE +Ninit, (13)
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Algorithm 1 Memory Update 1.1

1: if SCR 6= ∅ ySF 6= ∅ then
2: if MCR,k,g = ⊥ ormax (SCR) = 0 then
3: MCR,k,g+1 = ⊥;
4: else
5: MCR,k,g+1 = meanWL (SCR) ;
6: end if
7: MF,k,g+1 = meanWL (SF ) ;
8: k + +;
9: if k > H then
10: k = 1;
11: end if
12: else
13: MCR,k,g+1 = MCR,k,g;
14: MF,k,g+1 = MF,k,g;
15: end if

where MAX NFE is the maximun number of evaluations, and NFE is the current
number of evaluations of the objective function. This mechanism is activated when
NPG+1 < NPG, where NPG corresponds to number of individuals in the current
population.

Algorithm 2 is a general representation of C-LSHADE.

Algorithm 2 C-LSHADE
Require: H, p,Ninit, Nmin

Ensure: P (x)
1: Begin
2: NP = D ∗Ninit

3: Create P (xi,0) where i = 1,...,NP and evaluatef(xi,0)
4: Set the content of MCR,i,MF,i(i = 1, ..., H) = 0.5
5: g = 0, k = 1
6: while stop criteria not met do
7: Create SF = ∅, SCR = ∅, SDIF = ∅
8: Sort population indexes ascendingly
9: for i=1 to NP do
10: ri = randi (1, H)
11: Compute CRi,g y Fi,g based on the Eqs. 8 and 9
12: Create ui,g based on current-to-pbest/1/bin (Eq. 10)
13: if f(ui,g) < f(xi,g) based on Factible Rules then
14: xi,g+1 = ui,g

15: SCR = SCR ∪ CRi

16: SF = SF ∪ Fi

17: SDIF = SDIF ∪ |f (ui,g)− f (xi,g) |
18: end if
19: end for
20: Update memory based on the Algorithm 1
21: Compute NPg+1 according to Eq. 13
22: if NPg+1 < NP then
23: Sort population indexes ascendingly giving priority to the SVR and then to the fitness.
24: Delete worse NP −NPg+1.
25: end if
26: g + +
27: end while

4 Results and Analysis

To study the C-LSHADE components, the following configurations were proposed:
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– Constraint handling technique: Instead of the Feasibility Rules by ε-
Constrained [11] and Stochastic Ranking [7] methods were adopted.

– Linear population Size Reduction function: Deactivate it.
– Parameter adaptation scheme: Replace historical memory update algorithm

1.1 by version 1.0 proposed in [12], and compute CR per individual and F at
each generation.

Different variants of the algorithm were generated, grouped by the studied component
and denoted as follows: (1) corresponds to versions that have different constraint-
handling technique: LSHADE with ε-Constrained Method, ε-LSHADE, and LSHADE
with Stochastic Ranking, SR-LSHADE; (2) variants without the population reduction
mechanism: C-SHADE, ε-SHADE, and SR-SHADE; (3) variants with the historical
memory version 1.0: C-LSHADE 0, ε-LSHADE 0, and SR-LSHADE 0; and (4) variants
that compute CR and F dynamically: C-LDE, ε-LDE, and SR-LDE. A statistical
comparison among the C-LSHADE variants was carried out to achieve the purpose of
this study. The Kruskal-Wallis and the post-hoc Bonferroni tests were used. Each test
was applied with 95% confidence. The experiments were performed on a computer with
an Intel Core i7 - 2.5 GHz processor, 8 GB of RAM and 64-bit Windows 10 operating
system. The algorithms and statistical analysis were developed in the M language using
the MATLAB 2018a IDE. For all algorithms, 31 independent runs were performed to
solve both optimization problems and the parameters recommended in [14] were used:
H = 6, p = 0.11, Ninit = 18 and Nmin = 4. Likewise, the parameter values of the
constraint handling techniques were taken from [7,?]: for Stochastic Ranking Pf = 0.45
and for ε-Constrained cp = 0.5, θ0 = 0.2, Tc = 0.2MAX NFE. The stop criterion was
set at 400,000 maximun number of evaluations of the objective function (MAX NFE)
for M01 and 15,000 for M02. Case studies are treated as single-objective numerical
optimization problems subject to constraints (Eq. 2) with the aim to minimize the
trajectory tracking error. The complexity of the studies cases is high due to the amount
of precision points that the coupler’s point C must pass and the effort required to
find a combination of design variables that allow a successful solution compared to
the most known state-of-the-art algorithms. In general, all studied algorithms found
feasible solutions in every independent run. Figure 2 shows the Bonferroni test results
for the two test problems. There was significant differences in performance among
the algorithm variants with different constraint-handling techniques (C-LSHADE, ε-
LSHADE and SR-LSHADE) and those variants without the parameter adaptation
scheme (C-LDE, ε-LDE and SR-LDE), of which the latter obtained better results
for the M01 problem, see Figure 2a. Regarding this problem M01, all C-LSHADE
mechanisms were removed and the good performance was still present by using any
constraint-handling technique adopted in this paper. Concerning M02, those variants
without a population reduction mechanism (C-SHADE, ε-SHADE and SR-SHADE)
had a worse behavior, see Figure 2b. In contrast, the variants of group 4 (C-LDE, ε-
LDE and SR-LDE) demonstrated better performance than the rest. Regarding problem
MO2, the linear reduction is the only required mechanism by the algorithm to provide
better results.

5 Conclusions and Future Work

This work proposed an empirical study of the C-LSHADE algorithm in order to deter-
mine the importance of its components in solving two mechatronic design optimization
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(a) (b)

Fig. 2: Bonferroni post-hoc test based on final results. There are significant differences when the
confidence intervals do not overlap. A variant is considered with a better performance when its
confidence interval is closer to zero.

problems. The constraint-handling technique, the population size reduction and the
historical memory version for parameter adaptation were the mechanisms under study.
The overall results indicate that the only mechanism that must be present in the
algorithm to provide competitive results, particularly for the second test problem, is
the linear decreasing mechanism of the population size. In fact, a simplified version
of the algorithm could successfully resolve the first test problem. As future work, the
linear function for the population size reduction will be further analyzed and other case
studies will be solved.
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Abstract. Corrado Gini developed in 1914 a methodology to measure
the difference between two probability distributions, the Gini Index.
In this paper, we propose the Bimodal Gini Index. We based this
model on the definition of the Gini Coefficient, a model of independence
between two distributions, so we set a model that approximates the
Gini Index with the supposition that the searched distribution is a
linear combination of independent distributions, without adding a lot
of computational cost. We show some applications in political sciences
concerning voting problems to illustrate the performance of the Bimodal
Gini Index.

Keywords: Gini index, Gini coefficient, probability estimation.

1 Introduction

The Gini Index is a measure of the level of inequality between two probability
distributions. It is applied in several fields of study like engineering, ecology,
transport and economics, see [8].

The Gini Index problem is a particular case of Monge’s mass transfer
problem, as we will see in the following section. This problem always has a
solution that is a distance between the involved probability distributions, but it
can be very expensive to find it, computationally speaking, see [9] and [12].
To handle these expensive calculations, the Gini Coefficient was introduced
as a natural upper bound of the Gini Index. The Gini Coefficient has several
applications, many of them in economics and sociology, [2] and [8]. However, it
differs a lot from the value of the Gini Index.

In this work we present the Bimodal Gini Index, a model that is a better
approximation to the Gini Index than the Gini Coefficient with a low com-
putational cost, by taking the Gini Index problem and doing the supposition
that the searched probability is a linear combination of independent probability
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distributions. With this model, we reduced the number of variables and the
restrictions of the Gini Index problem and can be solved by using numerical
optimization.

Also, it has several interesting properties, among these we highlight that
it can be split in two linear programming problems, both easily solved by the
simplex method.

2 Gini Index and Gini Coefficient

Let X be a discrete random variable with n elements and two probability
distributions p and q on X. The Gini Index problem (GI) can be stated as:

Minimize:

n∑
i=1

n∑
j=1

dijπij , (1)

subject to: πij ≥ 0, for all i, j (2)
n∑

j=1

πij = pi, i = 1, 2, ..., n (3)

n∑
i=1

πij = qj , j = 1, 2, ..., n (4)

n∑
i=1

n∑
j=1

πij = 1, (5)

where pi = p(xi) y qi = q(xi) for i = 1, ..., n, the cost function is a distance
function dij = d(xi, xj) on X×X, for all i and j, and πij = π(xi, xj) denotes the
variables. The solution is a probability distribution π∗ = {π∗

ij : i = 1, ..., n, j =
1, ..., n}. We define the Gini Index for the distributions p and q, denoted by
GI(p, q), as the optimal value of the GI problem. Note that there are n2 no
negative variables, then the solution of the problem can be expensive to find
for large n, even with the use of computational tools. For more information
about the Gini index and its problem in both forms, continuos and discrete, see
[7,12,13].

On the other hand, we have a “measure of uncertainty” of a random variable,
the Gini Coefficient for a discrete random variable X with n elements and two
probability distributions p and q on X, see [1]:

GC(p, q) =

n∑
i=1

n∑
j=1

dijpiqj .

With these definitions we can establish the following inequality

GI(p, q) ≤ GC(p, q).

The Gini Index and the Gini Coefficient are used as indicators of social and
economic inequality, as we can see in the articles [3,10,11].
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3 Proposed Model: Bimodal Gini Index

To set the Bimodal Gini Index we consider the Gini Index problem and we add
the additional assumption that the searched probability distribution π is a linear
combination of independent distributions, that means, it has the form:

πij = αf
(1)
i f

(2)
j + (1− α)g

(1)
i g

(2)
j , (6)

where α ∈ (0, 1) and f (1), f (2), g(1) and g(2) are independient probability distri-
butions pairwise on X, this is that f (1) and f (2) are independent and g(1) and
g(2) are independent.

As f (1), f (2), g(1) and g(2) are probability distributions, by replacing (6) in
the expressions (3) and (4) we obtain:

pi = αf
(1)
i + (1− α)g

(1)
i , for all i and qj = αf

(2)
j + (1− α)g

(2)
j , for all j,

and expressing the variables g
(1)
i and g

(2)
j in terms of f

(1)
i and f

(2)
j , respec-

tively, as:

g
(1)
i =

pi − αf (1)i

1− α
and g

(2)
j =

qj − αf (2)j

1− α
, for all i, j and α ∈ (0, 1),

we can express the variables πij only in terms of f
(1)
i and f

(2)
j as:

πij =
α

1− α

(
f
(1)
i f

(2)
j − pif (2)j − qjf (1)i +

1

α
piqj

)
. (7)

Also, we can express the values of f
(k)
n , with k = 1, 2, by f

(k)
n = 1−

∑n−1
i=1 f

(k)
i ,

when we use this expressions in (7) we can define the following functions:

h1(f
(1)
i , f

(2)
j ) = f

(1)
i f

(2)
j − pif

(2)
j − qjf

(1)
i +

1

α
piqj , for i = 1, ..., n− 1, j = 1, ..., n− 1,

h2(f (1), f
(2)
j ) = f

(2)
j

(
1 −

n−1∑
i=1

f
(1)
i − pn

)
+qj

(
n−1∑
i=1

f
(1)
i − 1 +

1

α
pn

)
, for j = 1, ..., n−1,

h3(f
(1)
i , f (2)) = f

(1)
i

(
1 −

n−1∑
j=i

f
(2)
j − qn

)
+pi

(
n−1∑
j=1

f
(2)
j − 1 +

1

α
qn

)
, for i = 1, ..., n−1,

where f (1) = (f
(1)
1 , ..., f

(1)
n−1) and f (2) = (f

(2)
1 , ..., f

(2)
n−1), then we define

H(f (1), f (2)) =
α

1 − α

n−1∑
i=1

n−1∑
j=1

dijh1(f
(1)
i , f

(2)
j )+

n−1∑
j=1

dijh2(f (1), f
(2)
j )+

n−1∑
i=1

dijh3(f
(1)
i , f (2)).

This function only depends on the first n− 1 variables of the distributions f (1)

and f (2). Also we have:

pi − (1− α)

α
≤ f (1)i ≤ pi

α
,
qj − (1− α)

α
≤ f (2)j ≤ qj

α
, for all i, j and α ∈ (0, 1).
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Thus, we define the Bimodal Gini Index (BGI) as:

Minimize: H(f (1), f (2)),

subject to: max

{
0,
pi − (1− α)

α

}
≤ f (1)i ≤ min

{
1,
pi
α

}
, i = 1, ..., n− 1,

max

{
0,
qj − (1− α)

α

}
≤ f (2)j ≤ min

{
1,
qj
α

}
, j = 1, ..., n− 1,

max

{
0,
pn − (1− α)

α

}
≤ 1−

n−1∑
i=1

f
(1)
i ≤ min

{
1,
pn
α

}
,

max

{
0,
qn − (1− α)

α

}
≤ 1−

n−1∑
j=1

f
(2)
j ≤ min

{
1,
qn
α

}
.

If f∗ = (f (1)∗, f (2)∗) is the optimal solution of the previous problem, then we
define the Bimodal Gini Index as:

BGI(p, q) = H(f (1)∗, f (2)∗).

Note that the Gini Index problem has n2 no negative variables and 2n + 1
equality restrictions. With the proposed model we can reduce this amount to
2(n− 1) variables, 2(n− 1) box restrictions and 2 linear box restrictions.

Moreover, the Bimodal Gini Index is a better bound for the Gini Index than
the Gini Coefficient, that is, the following inequality is fulfilled:

GI(p, q) ≤ BGI(p, q) ≤ GC(p, q).

So, we add the additional assumption that the searched probability distribution
π is a linear combination of independent distributions, as in 6, based on the idea
of independence given by the Gini Coefficient, to make it more complex without
adding a lot of computational cost:

– If α takes the value 0 or 1 in (6), then the optimal value of the BGI problem
and the value of the Gini Coefficient will be the same.

– The objective function H of the BGI problem is a convex and symmetric
function of α and reaches its minimum value in 1/2 (or in α close to 1/2).

– We can separate the BGI problem in two linear programming problems, both
solved by the simplex method, as we will see in the following section.

3.1 Approximation to the Bimodal Gini Index

We can express the function H(f (1), f (2)) as:

H(f (1), f (2)) = HL(f (1)) +HL(f (2)) +HC(f (1), f (2)) + C,
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where:

HL(f (1)) =
α

1 − α

[
n−1∑
i=1

n∑
j=1

dij(−qjf (1)
i ) +

n−1∑
i=1

n−1∑
j=1

dnjqjf
(1)
i +

n−1∑
i=1

dinf
(1)
i

]
,

HL(f (2)) =
α

1 − α

[
n∑

i=1

n−1∑
j=1

dij(−pif (2)
j ) +

n−1∑
i=1

n−1∑
j=1

dinpif
(2)
j +

n−1∑
j=1

dnjf
(2)
j

]
,

HC(f (1), f (2)) =
α

1 − α

[
n−1∑
i=1

n−1∑
j=1

dijf
(1)
i f

(2)
j −

n−1∑
i=1

n−1∑
j=1

dnjf
(1)
i f

(2)
j −

n−1∑
i=1

n−1∑
j=1

dinf
(1)
i f

(2)
j

]
,

C =
1

1 − α

[
n∑

i=1

n∑
j=1

dijpiqj

]
+

α

1 − α

[
n−1∑
j=1

dnjqj +

n−1∑
i=1

dinpi

]
.

The linear functions HL(f (1)) and HL(f (2)) depends on f (1) and f (2),
respectively. The value of C is known. The quadratic function HC(f (1), f (2))
only have negative values bounded by −2d, where d is the maximum distance
between the elements of X. We can move the elements of X to a specific range,
so d is as small as we desired. Then, we only consider the linear functions,
leaving the following separate problems.

Linear problem with respect to f (1):

Minimize: HL(f (1))

subject to: max

{
0,
pi − (1 − α)

α

}
≤ f

(1)
i ≤ min

{
1,
pi
α

}
, i = 1, ..., n− 1,

max

{
0,
pn − (1 − α)

α

}
≤ 1 −

n−1∑
i=1

f
(1)
i ≤ min

{
1,
pn
α

}
.

Linear problem with respect to f (2)

Minimize: HL(f (2))

subject to: max

{
0,
qj − (1 − α)

α

}
≤ f

(2)
j ≤ min

{
1,
qj
α

}
, j = 1, ..., n− 1

max

{
0,
qn − (1 − α)

α

}
≤ 1 −

n−1∑
j=1

f
(2)
j ≤ min

{
1,
qn
α

}
.

Then we define the Separated Bimodal Gini Index as:

BGIs(p, q) = H(f (1)∗, f (2)∗),

where f (1)∗ = (f
(1)∗
1 , ..., f

(1)∗
n−1) y f

(2)∗
1 = (f

(2)∗
1 , ..., f

(2)∗
n−1) are the points where the

optimal results are reached in the linear problems with respect to distributions
f (1) y f (2), respectively, and H is the objective function previously expressed.

We can obtain the Separated Bimodal Gini Index solving two linear problems
by the simplex method, each of one with n− 1 variables, n− 1 box restrictions
and a linear box restriction. Solving these two problems is much less expensive,
computationally speaking, than solving the original one.
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– The Bimodal Gini Index and the Separated Bimodal Gini Index take the
same value in α = 1/2 in computational experiments.

– If we obtain the values of the distributions f (1) and f (2) we can obtain the
values of the distribution π of the form (6). The distribution π is of great
importance for the application in the following section.

4 Aplication in Political Science

4.1 Voting Data Ohio, 1990

We can see in the Table (1) the data of race of voting-age person and the voting
decision for the 1990 election in the Ohio State House, District 42, see [4]. The
unobservable values in the empty cells must be found from the observed values
in the marginals.

Table 1. Aggregate data for the 1990 election in the Ohio State House, District 42.

Race Voting decision
Democrat Republican No vote

African american 221 (0.313)
White 484 (0.687)

130 (0.184) 92 (0.131) 483 (0.685) 705 (1.000)

We want to fill this table using the problems raised in the previous section
by taking the value of α = 1/2, the random variable X ={African american,
White, Democrat, Republican, No vote} and the probability distributions p =
{0.313, 0.687, 0, 0, 0} and q = {0, 0, 0.184, 0.131, 0.685}. Since the values of the
random variable X are categorical, we will use the discrete metric. So, the
problems are:

Minimize: 0.315f
(1)
1 + 0.315f

(1)
2

subject to: 0 ≤ f
(1)
1 ≤ 0.626,

0.374 ≤ f
(1)
2 ≤ 1,

f
(1)
1 + f

(1)
2 = 1.

Minimize: f
(2)
3 + f

(2)
4

subject to: 0 ≤ f
(2)
3 ≤ 0.368,

0 ≤ f
(2)
4 ≤ 0.262,

0 ≤ f
(2)
3 + f

(2)
4 ≤ 0.63.

We found the searching value BGIs in points of the form

(f
(1)∗
1 , f

(1)∗
2 , f

(1)∗
3 , f

(1)∗
4 , f

(2)∗
1 , f

(2)∗
2 , f

(2)∗
3 , f

(2)∗
4 ) = (f

(1)
1 , 1− f (1)1 , 0, 0, 0, 0, 0, 0),

with f
(1)
1 ∈ [0, 0.626]. We analize the solution in the extreme point with f

(1)
1 = 0.

So the Table 2 shows the data of interest, the probability distribution π.
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Table 2. Results given by the Separated Binomial Gini Index for the 1990 election in
the Ohio State House, District 42.

Democrat Republican No vote
African american 0.115184 0.082006 0.11581

White 0.068816 0.048994 0.56919

Note that with the problems of the Separate Gini Index we can obtain the
wanted probabilities and a scenario of how the votes in Ohio could have been
distributed with respect to the race of the voters.

In [5] three types of results obtained for this same problem given by King
are shown, with the particularity that this solutions are interest intervals.
Thus, when making a comparison of the puntual results obtained by the IGAs
problems, we can notice that these are within the corresponding intervals.

4.2 Elections in the republic of Weimar, 1932

One of the most studied questions in the history is “who voted by Hitler?”. In
[6] identify some factors that could explain why certain groups of voters joined
the Nazi party, concluding that a determining factor was the economic great
depression, so the occupations of voters are studied. In the Table (3) we observe
the marginals obtained for this problem, the left column of the table denotes
each occupational group while the upper row indicates the different political
parties.

Table 3. Aggregate data for elections in 1932 in the republic of Weimar.

Far Left Left/Center Far Right Nazi Liberal No vote/ Other
Self-employed 0.164

Blue collar 0.314
White collar 0.144

Domestic 0.197
Unemployed 0.181

0.120 0.311 0.049 0.311 0.018 0.191

The objetive of this problem is filling the Table to answer questions like “what
fraction of independent people voted for the Nazi party?”. Analyzing historically
this type of questions, it is expected that the results related to the working class
(blue collar) will be those that favor the Nazi party, since they feared losing their
jobs if the centralist party remained in power, see [6]. There are no statistical
references for the solution to this problem, our results would be a way to confirm
the hypothesis made by researchers in Social Sciences.

We solved the Separated Bimodal Gini Index problems with α = 1/2 and the
random variable X ={Self-employed, Blue collar, White collar, Domestic, Unem-
ployed, Far Left, Left/Center, Far Right, Nazi, Liberal, No vote/Other} and the
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probability distributions p = {0.164, 0.314, 0.144, 0.197, 0.181, 0, 0, 0, 0, 0, 0} and
q = {0, 0, 0, 0, 0, 0.120, 0.311, 0.049, 0.311, 0.018, 0.191}. So, we have the following
problems:

Minimize: 0.809f
(1)
1 + 0.809f

(1)
2 + 0.809f

(1)
3 + 0.809f

(1)
4 + 0.809f

(1)
5

subject to: 0 ≤ f (1)1 ≤ 0.328, 0 ≤ f (1)2 ≤ 0.628,

0 ≤ f (1)3 ≤ 0.288, 0 ≤ f (1)4 ≤ 0.394,

0 ≤ f (1)5 ≤ 0.362, f
(1)
1 + f

(1)
2 + f

(1)
3 + f

(1)
4 + f

(1)
5 = 1.

Minimize: f
(2)
6 + f

(2)
7 + f

(2)
8 + f

(2)
9 + f

(2)
10

subject to: 0 ≤ f (2)6 ≤ 0.240, 0 ≤ f (2)7 ≤ 0.622,

0 ≤ f (2)8 ≤ 0.098, 0 ≤ f (2)9 ≤ 0.622,

0 ≤ f (2)10 ≤ 0.036, 0.618 ≤ f (2)6 + f
(2)
7 + f

(2)
8 + f

(2)
9 + f

(2)
10 ≤ 1.

The minimum value is reached in the points of the form

(f
(1)
1 , f

(1)
2 , f

(1)
3 , f

(1)
4 , f

(1)
5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, f

(2)
6 , f

(2)
7 , f

(2)
8 , f

(2)
9 , f

(2)
10 )

where the values of this variables meet the constraints of the previous problems.
We calculated the values in the Table 4 for the point

(0.198, 0.12, 0.258, 0.254, 0.17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18, 0.074, 0.098, 0.23, 0.036).

This point meets the aforementioned restrictions.

Table 4. Results given by the Separated Binomial Gini Index for the 1932 elections in
the republic of Weimar.

Far Left Left/Center Far Right Nazi Liberal No vote/ Other
Self-employed 0.022 0.043 0.009 0.048 0.004 0.038

Blue collar 0.026 0.144 0.006 0.113 0.002 0.023
White collar 0.024 0.018 0.013 0.035 0.005 0.049

Domestic 0.027 0.047 0.013 0.057 0.004 0.049
Unemployed 0.021 0.059 0.008 0.058 0.003 0.032

As we can see, it is true that the working class, blue collar, is the most likely
to belong to the Nazi party or the centralist party, as expected.

5 Conclusions and Future Work

The Bimodal Gini Index is a better bound for the Gini Index than the Gini
Coefficient. The Bimodal Gini Index has many favorable properties like the Sep-
arated Bimodal Gini Index problems. This is possible because of the specific form
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given to the searched distribution, that reduces the feasible set of the problem.
Also, because this model is based in the Gini Coefficient, the computational cost
does not increase as much. In this way we reduced the problem in terms of the
number of variables and we found a simpler way to solve it by means of two
linear problems with box constraints using the simplex method.

We can also observe in the given examples that the problems of the separated
Bimodal Gini Index are very useful to solve problems where we have grouped
information and we want to obtain data at a disaggregated level. The solved
examples are current problems pertinent to political science and history, and
their solutions are of great importance for these fields of science.

As future work, we want to use this model in other data bases in different
areas of science and in any type of problems that involved disaggregated data
or lack of information.
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Abstract. Windowing is a sub-sampling method that enables the in-
duction of decision trees with large datasets. Using a small sample of the
available training examples, the method can achieve levels of accuracy
comparable or better than those obtained using the full available dataset.
More relevant is the fact that Windowing-based strategies for Distributed
Data Mining (DDM) have shown a correlation between the accuracy
of the learned decision tree and the number of examples used to learn
it, i.e., the higher the accuracy, the fewer examples used to induce the
model. This paper corroborates that this behavior is also observed when
adopting inductive algorithms of a different nature than C4.5 or ID3,
the algorithms usually adopted when windowing, contributing to the use
of Windowing as a general sub-sampling method for DDM. The paper
also contributes exploring some metrics to the validation of the obtained
sub-samples of examples.

Keywords: sub-sampling, windowing, distributed data mining.

1 Introduction

Windowing is a sub-sampling method that enabled the decision tree inductive
algorithms ID3 [9–11] and C4.5 [12, 13] to cope with large datasets, i.e., those
whose size precludes loading them in memory. Algorithm 1 defines the method:
First, a window is created by extracting a small random sample of the available
examples in the full dataset. The main step consists of inducing a model with
the window and testing it on the remaining examples, such that all misclassified
examples are moved to the window.
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Algorithm 1 Windowing.

function Windowing(Examples)
Window ← sample(Examples)
Examples← Examples−Window
repeat

stopCond← true
model← induce(Window)
for example ∈ Examples do

if classify(model, example) 6= class(example) then
Window ←Window ∪ {example}
Examples← Examples− {example}
stopCond← false

until stopCond
return model

This step iterates until a stop condition is reached, e.g., all the available
examples are correctly classified or a desired level of accuracy is reached.

It has been argued [3] that the method offers three advantages: It copes
well with memory limitations, reducing considerably the number of examples
required to induce a model of acceptable accuracy. It offers an efficiency gain by
reducing the time of convergence, specially when using a separate-and-conquer
inductive algorithm, as Foil [8], instead of the divide-and-conquer algorithms
such as ID3 and C4.5. It offers an accuracy gain, specially in noiseless datasets,
possibly explained by the fact that learning from a subset of examples may often
result in a less over-fitting theory.

Although the lack of memory does not use to be an issue nowadays, similar
concerns arise when mining big and/or distributed data. Windowing has been
used as the core of a set of strategies for Distributed Data Mining (DDM) [6],
obtaining consistent results with respect to the achievable accuracy and the
number of examples required by the method. On the contrary, efficiency suffered
for large datasets as the cost of testing the models in the remaining examples
is not negligible. However, this is alleviated by using GPUs [5]. More relevant
for this paper is the fact that the Windowing-based strategies shows a strong
correlation (-0.8175845) between the accuracy of the learned decision trees and
the number of examples used to induce them, i.e., the higher the accuracy
obtained, the fewer the number of examples used to induce the model. Reductions
are as big as the 90% of the available training data.

The objective of this work is to corroborate if such a correlation is observed
when using inductive algorithms of different nature, so that the advantages of
windowing as a sub-sampling method could be generalized beyond decision trees.
For this, the paper is organized as follows: Section 2 introduces the adopted
methodology; Section 3 presents the obtained results; and Section 4 discusses
conclusions and future work. A preliminary contribution of the paper is the study
of some metrics to try to validate the obtained windows and to understand the
way such sub-sampling works so efficiently in some cases.

58

David Martínez Galicia, Alejandro Guerra Hernández, Nicandro Cruz Ramírez, Xavier Limón, et al.

Research in Computing Science 149(3), 2020 ISSN 1870-4069



2 Methodology

Because of our interest in distributed settings, JaCa-DDM 1 was adopted to run
experiments. This tool [6] defines a set of Windowing-based strategies using
J48, the Weka [14] implementation of C4.5, as inductive algorithm. Among
them, Counter is the most similar to the original formulation of Windowing,
excepting that: i) the dataset can be distributed in different sites, and ii) an
auto-adjustable stop criteria with a established maximum number of iterations
(10) is adopted. The parameters of the strategy, e.g., the maximum number
of rounds, are adopted from the literature. The same configuration is used for
all the experiments. The Counter strategy is tested on the datasets shown in
Table 1, selected from the UCI [2] and MOA [1] repositories. They vary in the
number of instances, attributes, and class’ values; as well as in the type of the
attributes. Some of them are affected by missing values.

Table 1. Datasets, adopted from UCI and MOA.

Dataset Instances Attribs Types Missing Class

Adult 48842 15 Mixed Yes 2

Australian 690 15 Mixed No 2

Breast 683 10 Numeric No 2

Credit-g 1000 21 Mixed No 2

Diabetes 768 9 Mixed No 2

Ecoli 336 8 Numeric No 8

German 1000 21 Mixed No 2

Hypothyroid 3772 30 Mixed Yes 4

Kr-vs-kp 3196 37 Numeric No 2

Letter 20000 17 Mixed No 26

Mushroom 8124 23 Nominal Yes 2

Poker-lsn 829201 11 Mixed No 10

Segment 2310 20 Numeric No 7

Sick 3772 30 Mixed Yes 2

Splice 3190 61 Nominal No 3

Waveform5000 5000 41 Numeric No 3

Apart from J48, the Counter strategy will be tested using the Weka im-
plementations of Naive Bayes, jRip, Multi-Perceptron, and SMO as inductive
algorithms. A 10-fold stratified cross-validation is run on each dataset, observing
the average accuracy of the obtained models and the average percentage of
original dataset used to induce the model, i.e., 100% means the full original
dataset was used. All experiments were executed on a Intel Core i5-8300H at
2.3GHz, up to 3.9GHz with 8Gb DDR4. 8 distributed sites were simulated on
this machine.

1 https://github.com/xl666/jaca-ddm
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In order to understand the performed sub-sampling, the following measures
were used to compare the obtained window and the original dataset:

– The Kullback-Leibler divergence (DKL) [4] is defined as:

DKL(P ||Q) =
∑
x∈X

P (x)log2(
P (x)

Q(x)
),

where P (x) is the full dataset class distribution and Q(x) the window class
distribution. Instead of using a model to represent a conditional distribution
of variables, as usual, we focus on the class distribution, computed as the
marginal probability. Values closer to zero reflect higher similarity.

– Sim1 [15] is a similarity measure between datasets defined as:

sim1(Di, Dj) =
|Item(Di) ∩ Item(Dj)|
|Item(Di) ∪ Item(Dj)|

,

where Di is the window and Dj is the full dataset; and Item(D) denotes
the set of pairs attribute-value occurring in D. Values closer to one reflect
higher similarity.

– Red [7] measures redundancy in a dataset in terms of conditional population
entropy (CPE), defined as:

CPE = −
nc∑
i=1

p(ci)

na∑
a=1

nva∑
v=1

p(xa,v|ci)log2p(xa,v|ci),

where nc is the number of classes, na is the number of attributes, and nva

is the number of values for the attribute a. ci stands for the i− th class and
xa,v represents the v− th value of attribute a. CPE can be normalized [3] in
such a way that values closer to zero reflect lower redundancy:

Red = 1− CPE∑na

a=1 log2nva

.

3 Results

Figure 1 shows a strong negative correlation between the percentage of training
instances used to induce the models and their accuracy, independently of the
adopted inductive algorithm. This reproduces the results for J48 reported in
literature [6] and corroborates that under Windowing, in general, the models
with higher accuracy require less examples to be induced. However, accuracy
is affected by the adopted inductive algorithm, e.g., Poker-lsn is approached
very well by J48 (99.75 ± 0.07 of accuracy) requiring few examples (5% of the
full dataset); while Naive Bayes is not quite successful in this case (60.02 ±
0.42 of accuracy) requiring more examples (59%). This behavior is also observed
between jRip and MultiPerceptron for Hypothyroid; and between SMO and jRip
for Waveform5000.
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Fig. 1. Correlation between accuracy and percentage of used training examples.
J48 = -0.98, NB = -0.96, jRip = -0.98, MP = -0.98 and SMO = -0.99.

Table 2 shows the accuracy results in detail while Table 3 show the number
of used examples results, in terms of the percentage of the full dataset used for
each inductive algorithm. Although not shown because of the available space,
accuracies are comparable to those obtained without using Windowing, i.e., using
the 100% of the available data to induce the models. Big datasets, as Adult,
Letter, Poker-Isn, Splice, and Waveform5000 did not finish on reasonable time
when using jRip, MultiPerceptron and SMO, with and without Windowing. In
such cases, results are reported as not available (na). This might be solved by
running the experiments in a real cluster of 8 nodes, instead of simulating the
sites in a single machine, as done here, but it is not relevant for the purposes of
this work.

The Kullback-Leibler divergence coefficient between the windows and the full
datasets was close to zero in all cases (DKL < 0.25), evidencing that the class
distribution of the windows is very similar to that observed in the full datasets.
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Table 2. Accuracies obtained from 10-fold cross validation (na = not available).

J48 NB jRip MP SMO

Adult 86.17 ± 0.55 84.54 ± 0.62 na na na
Australian 85.21 ± 4.77 85.79 ± 4.25 85.94 ± 3.93 81.74 ± 6.31 85.80 ± 4.77
Breast 94.42 ± 3.97 97.21 ± 2.34 95.31 ± 2.75 95.45 ± 3.14 96.33 ± 3.12
Credit-g 71.50 ± 5.81 75.10 ± 2.60 69.80 ± 3.71 69.80 ± 5.63 74.80 ± 5.98
Diabetes 73.03 ± 3.99 76.03 ± 4.33 71.74 ± 7.67 72.12 ± 4.00 76.04 ± 3.51
Ecoli 82.72 ± 6.81 83.93 ± 7.00 81.22 ± 6.63 82.12 ± 7.49 84.53 ± 4.11
German 71.10 ± 5.40 75.20 ± 2.82 70.20 ± 3.85 69.60 ± 4.84 75.80 ± 3.12
Hypothyroid 99.46 ± 0.17 95.36 ± 0.99 99.23 ± 0.48 92.26 ± 2.75 94.30 ± 0.53
Kr-vs-kp 99.15 ± 0.66 96.65 ± 0.84 98.46 ± 0.95 98.72 ± 0.54 96.62 ± 0.75
Letter 85.79 ± 1.24 69.28 ± 1.26 85.31 ± 1.06 na na
Mushroom 100.00 ± 0.00 99.80 ± 0.16 100.00 ± 0.00 100.00 ± 0.00 100.0 ± 0.00
Poker-lsn 99.75 ± 0.07 60.02 ± 0.42 na na na
Segment 96.53 ± 1.47 84.24 ± 1.91 95.54 ± 1.55 96.10 ± 1.15 92.42 ± 1.87
Sick 98.64 ± 0.53 96.34 ± 1.44 97.93 ± 0.95 96.32 ± 1.04 96.71 ± 0.77
Splice 94.04 ± 0.79 95.32 ± 1.07 92.75 ± 2.11 na 92.41 ± 1.34
Waveform5000 73.06 ± 2.55 82.36 ± 1.64 77.02 ± 1.59 na 85.94 ± 1.32

Table 3. Percentage of the full dataset used for induction (na = not available).

J48 NB jRip MP SMO

Adult 0.30 ± 0.01 0.21 ± 0.00 na na na
Australian 0.31 ± 0.02 0.25 ± 0.01 0.33 ± 0.02 0.39 ± 0.04 0.27 ± 0.01
Breast 0.17 ± 0.01 0.06 ± 0.00 0.14 ± 0.01 0.11 ± 0.01 0.09 ± 0.01
Credit-g 0.57 ± 0.03 0.43 ± 0.01 0.61 ± 0.01 0.55 ± 0.04 0.49 ± 0.01
Diabetes 0.54 ± 0.05 0.40 ± 0.02 0.52 ± 0.04 0.48 ± 0.03 0.42 ± 0.02
Ecoli 0.38 ± 0.03 0.27 ± 0.01 0.40 ± 0.03 0.31 ± 0.03 0.29 ± 0.02
German 0.56 ± 0.04 0.43 ± 0.01 0.59 ± 0.02 0.58 ± 0.02 0.47 ± 0.02
Hypothyroid 0.05 ± 0.00 0.12 ± 0.01 0.05 ± 0.00 0.24 ± 0.01 0.12 ± 0.01
Kr-vs-kp 0.08 ± 0.01 0.16 ± 0.01 0.13 ± 0.00 0.08 ± 0.00 0.12 ± 0.00
Letter 0.35 ± 0.02 0.38 ± 0.00 0.39 ± 0.01 na na
Mushroom 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
Poker-lsn 0.05 ± 0.00 0.59 ± 0.00 na na na
Segment 0.16 ± 0.01 0.22 ± 0.01 0.19 ± 0.01 0.14 ± 0.01 0.18 ± 0.00
Sick 0.07 ± 0.00 0.10 ± 0.01 0.08 ± 0.00 0.11 ± 0.01 0.10 ± 0.00
Splice 0.26 ± 0.01 0.11 ± 0.00 0.25 ± 0.01 na 0.19 ± 0.00
Waveform5000 0.59 ± 0.02 0.22 ± 0.01 0.52 ± 0.00 na 0.26 ± 0.01

However it does not seem to be a correlation between this coefficient and
the obtained accuracy, e.g., Mushroom has zero as divergence coefficient and
100% of accuracy, but Waveform5000 has similar divergence but considerable
lower accuracy.

Table 4 shows the results for sim1, suggesting that the windows for Aus-
tralian, Breast, German, Letter, Kr-vs-Kp, and Poker-lsn conserve all the values
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Table 4. Table of similarity measure sim1 using the 10-folds cross-validation windows.

j48 NB jRip MP SMO

Adult 0.39±0.01 0.29±0.00 na na na
Australian 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Breast 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Credit-g 0.63±0.03 0.51±0.01 0.69 ± 0.01 0.63 ± 0.04 0.58 ± 0.01

Diabetes 0.73±0.04 0.63±0.02 0.72 ± 0.03 0.69 ± 0.02 0.64 ± 0.01

Ecoli 0.77±0.03 0.65±0.02 0.78 ± 0.02 0.69 ± 0.04 0.65 ± 0.03

German 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

Hypothyroid 0.45±0.01 1.00±0.01 0.48 ± 0.01 0.68 ± 0.01 0.59 ± 0.01

Kr-vs-kp 1.00±0.01 0.97±0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Letter 0.99±0.01 0.99±0.01 0.98 ± 0.00 na na

Mushroom 0.97±0.02 0.99±0.01 0.98 ± 0.00 0.97 ± 0.01 0.97 ± 0.01

Poker-lsn 1.00±0.00 1.00±0.00 na na na

Segment 0.28±0.01 0.32±0.01 0.31 ± 0.01 0.25 ± 0.01 0.28 ± 0.00

Sick 0.57±0.02 0.58±0.01 0.59 ± 0.01 0.60 ± 0.02 0.60 ± 0.01

Splice 0.97±0.04 0.96±0.05 0.97 ± 0.03 na 0.96 ± 0.04

Waveform5000 0.93±0.01 0.71±0.01 0.90 ± 0.00 na 0.76 ± 0.01

for their attributes observed in the full datasets; while Adult and Segment have
problems achieving this. As in the previous case, this notion of similarity neither
seems to correlate with the observed accuracy, e.g., Segment:

Red shows consistently the same values for the windows and the full datasets,
meaning that both of them have very similar levels of redundancy. Given the na-
ture of Windowing this can be a little bit surprising, since the window is expected
to be less redundant than the full dataset because it does not include examples
already covered by the induced models. But Red measures the information value
given the information about the class values, an intrinsic property of the data
set; while the redundancy reduction expected by Windowing is a property of a
dataset given a classifier. This behavior of Red, reported in literature [3], suggests
that a different measure for redundancy should be adopted.

4 Conclusions and Future Work

The correlation between the accuracy of the models obtained by Windowing and
the number of examples used for this task was corroborated, independently of the
adopted inductive algorithm, i.e., high accurate models require fewer examples
to be learned. The metrics suggest that the windows have a class distribution
very similar to the full datasets, as well as the same items (attribute-value pairs).
They also have very similar intrinsic redundancy.

Unfortunately, such similarities are not enough to explain the success of the
technique since they do not correlate with the obtained accuracy of the models.

Up to our knowledge, this is the first comparative study of Windowing in this
respect. Future work requires finding a metric reflecting the notion of redundancy
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in terms of the set of covered examples to quantify the efficiency of Windowing
as a sub-sampling method. Also, observing the evolution of the windows through
the whole process seems pertinent to enhance our understanding of Windowing.
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Abstract. Traditional machine learning techniques were designed for
training for scratch depend on the current feature-space distribution.
In many real applications, the fact to obtain new data for training and
rebuilds models could become expensive or impossible. Therefore, from
a lifelong machine learning conceptualization, transfer learning can be
indeed beneficial to speed up the time it takes to develop and train
a model by reusing an isolated pre-training setting as a starting point
for another target domain, especially when multiple tasks and hyper-
parameter optimization are considered, such as a full model selection
approach. This document presents an early transfer learning strategy
based on a decision tree powered by full models for temporal databases
trained in an isolated way with different search methods. The proposed
transfer learning strategy is capable to suggesting the starting point and
the search method adopted by the full model selection approach.

Keywords: transfer learning, full model selection, temporal databases.

1 Introduction

Humans have the innate capacity to transfer knowledge across tasks. In this
regard, the acquired experience can be utilized in the same way to solve re-
lated tasks. Therefore, the more connected tasks, the easier it is to transfer or
cross-utilize the knowledge. Concerning Computer Science, particularly, Data
Mining (DM) and Machine Learning (ML) fields, have been inspired by how
human beings learn and transfer knowledge to simulate those behaviors through
algorithms.

However, although significant progress in knowledge engineering in both DM
and ML algorithms has achieved, most of them have been traditionally designed
to work in isolation. The isolated training means that the built models are
focused on specific tasks and depend on the current feature-space distribution.
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Therefore, if the distribution changes, the models need to be rebuilt from scratch
using newly collected training data.

In many real applications, the fact to obtain new data for training and
rebuilds models could become expensive or impossible. In order to overcome
these issues, researchers and scientists turn the gaze toward knowledge transfer
or transfer learning, whose purpose is centered on the need for lifelong machine-
learning methods that retain and reuse previously learned knowledge. According
to Goodfellow et al. [5], transfer learning is described as the situation where what
has been learned in one setting is exploited to improve generalization in another
environment.

Research on transfer learning has attracted more attention in the last decades
in different ways such as life-long learning, multi-task learning, knowledge trans-
fer, inductive transfer, knowledge consolidation, context-sensitive learning, knowledge-
based inductive bias, meta-learning, incremental/cumulative learning, and re-
cently Auto-machine learning (AutoML) or Full Model Selection.

The specialized literature on learning transfer highlights three important
research issues:

– What to transfer?
– How to transfer?
– When to transfer?

Regarding these issues, Pan and Yang [8], suggest a classification of transfer
learning approaches according to three sub-settings: a) Inductive transfer learn-
ing, the target task is different from the source task, while the source and target
domains can be the same or not. b) Transductive transfer learning, the source
and target tasks are the same, while the source and target domains could be the
same. c) Unsupervised transfer learning, the target task is different but related
to the source task focus on unsupervised learning tasks in the target domain.

In related literature, it has been observed that in transfer learning approaches,
especially inductive transfer learning, it is possible to transfer instances, feature
representation, parameters, and relational-knowledge. Regarding related works
of transfer learning, most of the research has been developed within the frame-
work of artificial neural networks where multi-task can be involved [10].

In the context of the Full Model Selection (FMS) problem, where multiple
task and hyper-parameters optimization are involved, the transfer learning has
not been explored. Since one of the benefits of transfer learning is that it can
speed up the time it takes to develop and train a model by reusing these settings
as a starting point for another scene. The transfer learning strategy turns out
to be an attractive option to accelerate the search for complete models.

In this regard, an early proposal of transfer learning in the frame of an FMS
algorithm for temporal data mining tasks is presented. The remaining sections
of this document are organized as follows. In Section 2, a brief theoretical
background of FMS in temporal data is given. In Section 3, the employed
methodology is described. Then, in Section 4, the preliminary results are out-
lined. Finally, Section 5 presents conclusions and future work.
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2 Background

2.1 Full Model Selection Problem

Full Model Selection problem (FMS) refers to all aspects of automating the
machine learning process, including model selection and hyper-parameter op-
timization for carrying on different tasks in an incremental way. In order to
produce a suitable combination of methods which help to classify or predict a
new data within a fixed computational cost, FMS can involve two remarkable
concerns: (1) no single method performs well on each dataset, and (2) some
methods work appropriately base on its hyper-parameter optimization. Both
issues are known as Algorithm Selection and Model Selection problems [3, 11].

This work tackles the FMS problem in temporal databases, mainly in time-
series, as a single-objective optimization problem through an evolutionary wrap-
per approach, where population-based metaheuristics or single point-search meta-
heuristics can be used [7, 2, 9]. An instance of FMS problem for temporal data
consists of finding a suitable combination of smoothing, time-series representa-
tion, instances reduction, and classification methods with the setting of their
related hyper-parameters. The FMS problem is expressed in Equation 1, where
a set of algorithms A = A1, ..., An with their related hyper-parameters θ =
{θ1, ..., θm} and labeled training data D = {(x1, y1), ..., (xn, yn)} are used to find
the optimal generalized performance, for which, the training data is split up into
disjoint training Di

train and validation Di
valid datasets which are evaluated by

loss function L in an isolated training through k-cross-validation method:

A∗,θ∗ ∈ arg min
AJ∈A,θ∈Aj

K∑
i=1

L(Aj
θ, D

i
train, D

i
valid). (1)

One of the advantages of solving the FMS problem by evolutionary wrapper is
the capacity of manipulate multiple task and the hyper-parameter optimization
at the same time. However, the main disadvantages of this approach are the high
computational cost during the isolate training and the absence of reusing trained
models for other data domains. Therefore, to treat those drawbacks, and inspired
by lifelong machine learning (LML) paradigm [12], a set of experiments to find
a strategy of transfer learning within the framework of the FMS algorithm is
carried out.

3 Methodology

In this section, the adopted general methodology is described and presented
in Figure 1. The considered instance space X is a set of time-series databases,
taken of a well-known benchmark [6]. The considered FMS approach is widely
described in [9], and general behavior is presented in Algorithm 1. This approach
can be works under two different metaheuristics structures, based-population or
a single point optimizer [1, 13].
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Fig. 1. Graphical representation of interaction between specific instance space, FMS
approach and transfer learning strategy under LML paradigm.

The based-population structure is guided by µ-Differential Evolution algo-
rithm (four variants are evaluated) while the single point search operates under
local search (two different solution encoding are considered). Candidate solutions
are composed of a combination of methods for smoothing, time-series representa-
tion, instance selection and classification with associated hyper-parameters. The
original FMS approach was designed to train in an isolated way where all candi-
date solutions are evaluated according to the cross-validated miss classification
rate, depending on the available database.

At the end of the evolutionary process, the best solution is obtained for
each database. In order to build a strategy to transfer learning under LML
paradigm, a knowledge base is needed, that a long term will be interacting with
universal knowledge. In this work, the knowledge base is powered by a decision
tree building from the best full models obtained during the isolated training of
the FMS algorithm in its different versions per each database. Concerning the
LML framework, the FMS algorithm must use the decision tree to determine
the starting point for the training stage of a new database, as well as the
recommended metaheuristic. Therefore, with the transfer learning strategy based
on a decision tree, the cost to generate full models for new instances of temporal
databases is expected to be lower than training from scratch. So far, the retention
and consolidation are not considered in this early proposal.

4 Experiment and Results

This section presents a set of experiments realized to build and evaluate the early
transfer learning strategy for FMS algorithm. The experimentation is presented
in two stages: (1) A comparison of the final statistical results of variants of FMS
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Algorithm 1 General behavior of FMS algorithm
Require: A (Pool of available methods), θ (Set of involved hyper-parameters), M (Metaheuristic

as optimizer), fitness (Fitness Function), Dtrain (Train dataset), Dvalid (Validation dataset),
Dtest (Test dataset),

1: Set maxItera % Maximum number of iterations
2: Set i = 0
3: Set M % which can be population-based or single point optimizer
4: Randomly generate initial solution(s) % if M is population-based a set of solutions are generated,

other side one initial solution is generated
5: while i < maxItera do
6: Starts optimization process through population-based or single point search
7: A fitness function is used for evaluating
8: Special operators are involved (crossover, mutation, selection or neighborhood generator)
9: end while
10: Get best final solution ~s % involves a suitable combination of methods and their hyper-

parameters
11: Evaluate ~s on Dtest

algorithm to build a based decision tree knowledge base and (2) preliminary
results of the transfer learning strategy.

4.1 Stage 1: Knowledge Base Building

Six versions of FMS algorithm were trained in an isolated environment where
eight temporal databases (Table 1) were used. The four firsts versions of FMS
algorithm correspond to population-based option while the two rests are compat-
ible with the single-point search option. In all cases, the termination condition
was 3000 evaluations, and five independent runs were carried out. The configu-
ration used by each involved metaheuristics is described as following, based on
[2, 14]:

P-DEMS versions: iter = 500, NP = 6, CR = 0.1, F = 0.9, N = 2 and R = 10.
S-LSMS versions: iter = 500 and Nk = 6.

Table 3 shows the final numerical results obtained by the six FMS ver-
sion training in a isolated way. The population-based versions were known as
P-DEMS1 to P-DEMS4 and the single point search versions were named as
S-LSMS1 and S-LSM2. The reported values correspond to the average of five
trials evaluated in the testing set of each database. A non-parametric Friedman
test was used [4] for multiple comparison among FMS versions. Friedman test
converts numerical values to ranks. Thus, it ranks the FMS versions for each
problem separately, the best performing algorithm version should have rank 1,
the second-best rank 2, etc. When ties are presented, like this case, average ranks
are computed.

According to the average ranks, it is observed that SLSMS1 and PDEMS1
were the two best versions, followed by P-DEMS2, S-LSMS2, P-DEMS4 and
P-DEMS3, respectively. From this, information a simple log-archive was created.
The log-archive contains information related to each database’s information
(time-series length, number of classes, domain), the full best model obtained
by isolated training of the six versions of FMS algorithm for each database, the
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Table 1. Time-series databases description.

No. Name
No. of
classes

Training
set size

Testing
set size

Time-series
length

Domain

1. Beef 5 30 30 470 Spectro

2. CBF 3 30 900 128 Simulated

3. Coffee 2 28 28 286 Spectro

4. ECG200 2 100 100 96 ECG

5. FaceFour 4 24 88 350 Image

6. Gun Point 2 50 150 150 Motion

7. Lightning-2 2 60 61 637 Sensor

8. Lightning-7 7 70 73 319 Sensor

9. OliveOil 4 30 30 570 Spectro

10. Trace 4 100 100 275 Sensor

Table 2. Description of knowledge base attributes.

Attribute Description Type

length Time-series length. Numeric

classes Number of classes. Numeric

smooth Type of selected smoothing method. Nominal

representation Type of selected time-series representation method. Nominal

insReduc Type of selected instance selection method. Nominal

error Misclassification rate of the tested model. Numeric

Meta Version of FMS algorithm. Nominal

average runtime during isolated training for each database and FMS algorithm,
the test misclassification rate of each full model and the name of FMS algorithm.

From this, information a simple log-archive was created. The log-archive
contains information related to each database’s information (time-series length,
number of classes, domain), the full best model obtained by isolated training of
the six versions of FMS algorithm for each database, the average runtime during
isolated training for each database and FMS algorithm, the test misclassification
rate of each full model and the name of FMS algorithm. A total of 300 models
were stored that gave rise to form a supervised knowledge database, where the
name of the FMS algorithm was considered as the class attribute.

Because only two versions of FMS algorithm reported competitive results, the
knowledge database was limited to only store the models of these versions. Then,
the knowledge base was composed of seven attributes, detailed in Table 2, with
100 different models. A decision tree of Weka was selected to generate a practical
and visual way that supports the rules generation that can be incorporated as
part of the learning transfer strategy. The accuracy of the decision tree was of
83.10%, and it is presented in Figure 2.

4.2 Stage 2: Adoption and Testing of the Learning Strategy

According to the taxonomy of learning transfer approaches, the proposed strat-
egy, in this work, is classified as Transductive transfer learning, because of the
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Table 3. Comparison of averaging performance among the six metaheuristics for each
database. Values to the right of ± represent the standard deviation and the values in
parentheses represent the ranks computed by the Friedman test. Values in boldface
mean the lowest values found or the best ranking.

Database P-DEMS1 P-DEMS2 P-DEMS3 P-DEMS4 S-LSMS1 S-LSMS2

Beef 0.053±0.102 (3) 0.087±0.038 (4) 0.000±0.000 (1.5) 0.160±0.060 (5) 0.000±0.000 (1.5) 0.367±0.227 (6)

CBF 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.030±0.027 (6)

Coffee 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.268±0.157 (6) 0.000+0.000 (3)

ECG200 0.000±0.000 (2) 0.800±0.447 (4) 1.000±0.000 (5.5) 1.000±0.000 (5.5) 0.000±0.000 (2) 0.000±0.000 (2)

FaceFour 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5)

Gun Point 0.000±0.000 (1) 0.395±0.221 (4) 0.493±0.000 (5.5) 0.493±0.000 (5.5) 0.388±0.217 (3) 0.212±0.253 (2)

Lightning-2 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.069±0.154 (6)

Lightning-7 0.766±0.035 (5) 0.762±0.028 (4) 0.786±0.019 (6) 0.761±0.012 (3) 0.019±0.019 (1) 0.082±0.046 (2)

OliveOil 0.013±0.030 (2.5) 0.033±0.047 (5) 0.027±0.043 (4) 0.013±0.018 (2.5) 0.000±0.000 (1) 0.133±0.122 (6)

Trace 0.800±0.447 (3.5) 0.800±0.447 (3.5) 1.000±0.000 (5.5) 1.000±0.000 (5.5) 0.000±0.000 (1.5) 0.000±0.000 (1.5)

Average rank 2.950 3.700 4.050 3.950 2.550 3.800

Fig. 2. Decision tree of knowledge base.

source and target tasks are the same, while the source and target domains
could be the same or not. Regarding the three principal questions on what(Q1),
how(Q2)and when(Q3) to transfer, these will be described below:
Q1: Setting of full models that includes selected methods and their hyper-
parameters optimized. Besides the suggested search engine for continue the
training process.
Q2: The pre-trained models that will be the starting point for another dataset
will be randomly selected within the knowledge base, as long as the pre-trained
models have been used in smaller time series or of the same length as the new
database. A set of six different models can be selected as randomly, which will be
evaluated by the decision tree. The tree will suggest a class tag for each instance,
which corresponds to the type of search engine. Considering the majority vote, If
the population-based option (P-DEMS1) is suggested, all models are transferred.
Otherside, if the single point optimizer (S-LSMS1) is suggested, only one of the
six can be assigned.
Q3: At the beginning of the training process of a new data set that not exists
in the knowledge base.

The proposed transfer strategy for FMS algorithm was tested on four databases,
the preliminary results are shown in Table 4. Similar behavior was obtained by
LML-FMS in two of the four databases against isolated training. The suggested
search strategy for theses cases was S-LMS1. Otherside, the significantly worse
cases were produced by the P-DEMS1 search engine. An improvement speed up
on training was observed when P-DEMS1 was suggested as a search engine.
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Table 4. Comparison between the isolated training and proposed approach by transfer
learning. IT means isolated training, while LML-FMS means lifelong machine learning
for the full model selection. Values in boldface mean the significant lowest values.

1

No. Name Classes TS-Length .6Domain .6 IT .6LML-FMS

1. ECGFiveDays 2 136 ECG 0.0000 0.0011

2. SonyAIBORobotSurface 2 70 SENSOR 0.0032 0.0080

3. SonyAIBORobotSurfaceII 2 65 SENSOR 0.0031 0.0183

4. ItalyPowerDemand 2 24 SENSOR 0.0264 0.0255

5 Conclusions and Future Work

In this paper, a transfer learning strategy for the FMS algorithm for temporal
data mining was presented. The initial knowledge base was built from isolated
pre-trained full models, and the transfer learning is based on a decision tree
powered by that base. Although isolated training provides better solutions in two
of the databases, preliminary results through transfer learning show competitive
results, encouraging to extend experiments in other database domains. There-
fore, as future work, data complexity measures, test data distribution, or model
complexity could be considered into the knowledge base. Besides, to explore
other ways to transfer the learning between different temporal domains data.
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www.cs.ucr.edu/ẽamonn/time series data/

7. Momma, M., Bennett, K.P.: A pattern search method for model selection of support
vector regression. In: Proceedings of the 2002 SIAM International Conference on
Data Mining. pp. 261–274. SIAM (2002)

8. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. on Knowl. and
Data Eng. 22(10), 1345–1359 (Oct 2010)

72

Nancy Pérez Castro, Héctor Gabriel Acosta Mesa

Research in Computing Science 149(3), 2020 ISSN 1870-4069
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Alejandro Platas López, Nicandro Cruz Ramı́rez, Efrén Mezura Montes,
Alejandro Guerra Hernández

Universidad Veracruzana, Centro de Investigación en Inteligencia Artificial,
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Abstract. This work proposes Differential Evolution (DE) to train pa-
rameters of Bayesian Networks (BN) for optimizing the Conditional
Log-Likelihood (Discriminative Learning) instead of the log-likelihood
(Generative Learning). Although Discriminative Parameter Learning al-
gorithms have been proposed, to the best of the authors’ knowledge, a
metaheuristic approach has not been devised yet. Thus, the objective
of this research is to come up with this kind of solution and evaluate
its behavior so that its feasibility in this domain can be determined.
According to the theory such a solution tends to generate low-bias classi-
fiers that minimize classification error but this is not reflected in results,
regarding proposed method, bias in search for best solutions improves
DEs performance.

Keywords: Bayesian networks, differential evolution, discriminative pa-
rameter learning.

1 Introduction

Two paradigms are distinguished for parameter learning of Bayesian networks.
One of them, called Generative Learning (GL), optimizes Log-Likelihood in order
to obtain the parameters that characterize the joint distribution in the form
of local conditional distributions, and subsequently estimates class conditional
probabilities using the Bayes rule. Even though this paradigm is computationally
efficient, it is likely to generate biased classifiers [12].

The other paradigm optimizes Conditional Log-Likelihood (CLL) to directly
estimate the parameters associated with conditional class distribution. Such
paradigm is known as Discriminative Learning (DL) and generates low-bias
classifiers that typically tend to minimize the classification error. In addition, the
effect caused by the assumption of conditional independence among attributes
in the network structure, but which may be violated in the data, is reduced.
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However, the huge search space defined by the parameters that optimize the
CLL function motivates this work to find efficient and effective search algorithms
for discriminative parameter learning in BN classifiers [1,9].

Based on the above, different algorithms have been developed with the pur-
pose of generating unbiased classifiers that mitigate the assumption of condi-
tional independence among attributes. To the best of the authors’ knowledge,
there are nor proposals that apply evolutionary algorithms for DL of parameters.
In this paper, we propose the use of the Differential Evolution (DE) algorithm
for learning parameters in BN optimizing CLL. The aim is to understand the
behavior of this evolutionary algorithm in this particular optimization task in
both optimized structures for classification purposes, learned with a Bi-Objective
PSO [2] and structures that are not optimized, learned by Tree-Augmented
Network [3]. A comparison is made against some parameter learning algorithms
for Log-Likelihood optimization.

The rest of the paper is organized as follows. Section 2 describes the opti-
mization problem and introduces notations and terminologies. Section 3 gives
details about the implementation of algorithms and experimental settings. The
obtained results are presented in section 4. Finally, some conclusions and possible
paths of future work are given in section 5.

2 Parameter Learning

GL is based on two steps, the first involves the maximization of P (y,x), where y
is the class and x is the set of attributes; and the second step is the application
of the Bayes rule to obtain P (y|x). In DL, it is possible to directly optimize
P (y|x), maximizing CLL.

Although there are approaches for parameter learning (not structures) with
a discriminative approach [4]-[12], no meta-heuristic algorithms for DL of pa-
rameters in BNs have been adopted. A related work was proposed by [13], where
they optimize LL (Generative approach) with a Genetic Algorithm combined
with Expectation Maximization (GAEM). This proposal, according to the au-
thors, combines the global search and local search properties of the respective
algorithms. Part of notation and definitions used throughout this paper are taken
from that work.

The proposed methods in this paper is based on Differential Evolution, which
has been used for optimization problems in real-world applications[14]. DE was
introduced in 1996 [15], and improved with some mechanisms to decrease the
dependence to its parameter values such as the mutation factor F and the
crossover rate CR [14], so as to increase its search performance[16].

To determine which search strategies provide a better performance, four DE
variants will be used in this study: DE/rand/1/bin [15], JADE without archive,
JADE with archive [14] and L-SHADE [16]. Such variant selection was made to
include the most popular DE variant (DE/rand/1/bin), a variant with a novel
differential mutation operator (JADE) and a recent one with a memory-based
parameter adaptation mechanism (L-SHADE).
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Let X = {X1, X2, . . . , XR} denote the set of random variables in a BN. Each
random variable Xk is associated with a Conditional Probability Table (CPT).
An individual ρt consists of a random variables vector of CPTs in a BN. The
estimated CPT of an individual i at generation t is denoted by Θt

i . An individual
is defined as a vector consisting of CPTs: ρti = (Θt

1, Θ
t
2, . . . , Θ

t
R).

A CPT is generated based on the constraint that the sum of probabilities
for different states of the random variable should be equal to 1 for a parent
instantiation. A CPT is given by: Θt

i = (θt1,1, . . . , θ
t
1,b, . . . , θ

t
a,1, . . . , θ

t
a,b), where

θtab ∈ [0, 1] denotes a probability value for a particular state given a parent
instantiation.

3 Implementation

The obtained performance by the DE variants was compared based on both
CLL optimization and predictive accuracy. Such results were further contrasted
against those obtained by three GL algorithms: (1) Bayesian estimation, (2)
maximum-likelihood and (3) Attribute-Weighted Naive Bayes. The parameter
learning was applied to (1) BN structures optimized for classification with a
bi-objective PSO algorithm that seeks trade-offs between predictive power and
compression of data with the MDL metric [2]; the solution found in the “knee”
of the Pareto front was selected as the best BN structure, and (2) BN structures
learned with TAN-CL[1]. The datasets shown in Table 1 were used for com-
parison purposes and predictive accuracy was tested with 15 rounds of 2-fold
stratified cross validation. 2-fold cross validation is used in order to maximize
the variation in the training data from trial to trial [12].

Table 1. Details of datasets. Abrev: Abbreviation. Class = Number of classes. Att:
Number of attributes. Case: Number of cases. θs: Number of parameters to be optimzed.

Data Abbrev Class Att Case θs Data Abbrev Class Att Case θs

australian aust 2 15 690 130 hepatitis hepa 2 20 80 162

chess ches 2 37 3296 290 lymphography lymp 4 19 148 1220

cleve clev 2 12 296 1005 Mofn-3-10 mofn 2 11 1324 78

corral corr 2 7 128 46 pima pima 2 9 768 102

crx crx 2 16 653 848 segment segm 7 20 2310 2548

diabetes diab 2 9 768 102 Soybean-large soyb 19 36 316 5265

flare flar 8 11 1389 276 Tic-tac-toe tic- 2 10 958 152

german germ 2 21 1000 866 vehicle vehi 4 19 958 1152

glass2 glas 2 10 163 1038 vote vote 2 18 436 278
heart hear 2 14 270 118 Waveform-21 wave 3 22 301 3186

Two repairs were applied to satisfy the constraints for θtab ∈ [0, 1]:

θ
′

ab =

{
|θab| mod 1 if θab < 0
1− (θab mod 1) if θab > 1,
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and to keep the sum of row vectors equal to 1:

θ
′

ab = θab/
n∑

b=1

θab.

For the DE variants, 31 independent runs were performed on each dataset.
The parameter values used in each DE variant are detailed in Table 2. Such values
were adopted from the specialized literature [14] and by further experimentation.

Table 2. Parameter values of DE variants

DE algorithm NP G F CR c p |A|
rand/1/bin 200 25 × Att 0.5 0.7

JADE without A 200 10 × Att 0.05 0.05 ∅
JADE with A 200 10 × Att 0.05 0.05 NP

L-SHADE 200 10 × Att 0.05 0.05 NPg

4 Results

Based on the results summarized in Fig. 1, in datasets with a few number of
parameters θ, the DE variants provided better results than those of the GL
algorithms. Such behaviour was less marked in complex BN. Graphically there is
no difference among structure types. As expected, those algorithms that had CLL
as objective function, gave better results (Fig. 2). Regarding predictive accuracy,
there is no clear evidence in favor of any approach, although DE variants are
not the best, as shown in Figs. 3 and 4.

5 Conclusion and Future Work

A comparison of representative DE variants in an open problem about discrim-
inative learning of parameters in BNs was presented. This would lead to the
generation of classifiers with low bias that minimize the classification error.
Based on the results obtained, difficulties were noted for DE variants when
the number of parameters θ to be optimized increased. On the other hand,
it was also observed that bias in search for high-quality solutions as well as the
reduction in population size improved the DE variants performance. Future work
contemplates the application of strategies that are capable of contending with
big networks. Although it was not the purpose of this research, it is important
to evaluate the performance of the proposed DE variants against state-of-art
discriminative learning algorithms.
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Fig. 1. Best CLL obtained in 31 independent runs by the DE variants and CLL
obtained by the GL algorithms. Number of parameters θ are shown in parentheses.

1 2 3 4 5 6 7

CD

L−SHADE

JADE with A

JADE without A

rand/1/bin

ML

Bayesian

AWNB

Fig. 2. Critical Differences diagram for the median CLL value of 31 independent runs
(DE variants) and CLL value (GL algorithms). Horizontal line segments group together
algorithms with CLL that are not significantly different (at α = 0.05). Top line axis
ranks methods from best (left) to worst (right).
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Fig. 3. Predictive accuracy of 15 rounds of 2-fold CV with the parameters learned by
median of best solutions among 31 independent runs by DE variants and solution of
GL algorithms. Datasets are sorted by number of parameters θ (shown in parentheses).
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Fig. 4. Critical Differences diagram for median predictive accuracy of 15 rounds of
2-fold CV among algorithms. Horizontal line segments group together algorithms with
predictive accuracy that are not significantly different (at α = 0.05). Top line axis
ranks methods from best (left) to worst (right).
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Abstract. A preliminary performance assessment of the well-known Non-

Dominated Sorting Genetic Algorithm II and one of its variants to optimize the 

electrical power production in the state of Oklahoma is presented in this paper. 

Such variant has a chaotic model to generate the initial population. Solar, wind 

and natural gas power systems, the first two renewable energies, are considered 

in the problem of interest. Three conflicting objectives are optimized: (1) power 

production, (2) production costs and (3) CO2 emissions. The spacing metric is 

computed to compare the performance of both variants. The obtained results 

suggest that the chaotic model for the initial population does not improve the 

performance of the original algorithm in this particular multi-objective 

optimization problem. 

Keywords: evolutionary multi-objective optimization, energy production, re-

newable energies. 

1 Introduction 

Climate change is a very relevant problem that human kind is facing. The United 

Nations has warned that approximately a dozen years are left to limit climate change at 

1.5 °C in order to prevent a world crisis [1]. Power production is one of the key elements 

to consider. Fossil fuels have been and continue to be widely used to produce electricity. 

These energy sources, when burned to generate heat to produce power, spreads nitrogen 

oxides and other contaminants that contribute to the smog and acid rain [2]. 

Several countries, including the United States, have started to adopt renewable 

energy sources, such as solar and wind energy, to produce power. In 2017, around the 

11% of the total consumed energy in the US came from renewable energies [3]. With 

respect to the state of Oklahoma, according to the US department of energy, 50% of the 

annual energy production in 2016 comes from natural gas, 38% from coal, 10% comes 
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from solar and wind power and 1% from hydro-energy [4]. Despite the US government 

position about climate change, as mentioned in [5], the renewable energy industry is 

expected to grow and play an important role in the energy production in some of the 

most populated states of the country. 

Beyond the merely direct utilization of these power sources, an optimal distribution 

of the generation power between them is highly desirable. To optimize the power 

production problem different multi-objective evolutionary algorithms (MOEAs) have 

been adopted. The algorithm of interest in this paper is the Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II) [6], which has been a popular choice to solve multi-

objective power optimization problems. Wahlroos et al. [7] optimized a generation 

system in terms of CO2 emissions, production costs and production adequacy, using 

NSGA-II. Wang and Zhou [8] utilized the same algorithm to optimize the emissions 

and energy-savings of a wind power system. Liu and Dongdong [9] optimized a 

multiple source power system considering its production cost and the amount of 

emissions it produces. Zhou and Sun [10] utilized this MOEA to optimize a hybrid 

energy system consisting of solar power and wind power. In this study, the results were 

compared with a modified version of this algorithm, called L-NSGA-II [11]. 

Motivated by the above mentioned, and particularly by [10], a multi-objective 

optimization problem is stated for the power production of Oklahoma and solved using 

NSGA-II and one of its variants (L-NSGA-II) with the aim to assess their performance 

in this new real-world instance. 

The paper is organized as follows: Section 2 states the problem of interest, Section 

3 details both, NSGA-II and the variant adopted in this work. After that, Section 4 

includes the experiments and results and Section 5 presents the conclusions and 

future work. 

2 Problem Statement 

A multi-objective optimization problem can be defined, without loss of generality, as 

to: find a solution vector �⃑� = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇, which minimizes 𝑓(�⃑�) =

[𝑓1(�⃑�), 𝑓2(�⃑�), … , 𝑓𝑚(�⃑�)]𝑇, where each 𝑥𝑗 ∈ [𝑙𝑜𝑗 , 𝑢𝑝𝑗].  

Pareto dominance is used as a criterion to solve multi-objective optimization 

problems, and it is defined as follows: a solution vector �⃑� = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 is said to 

dominate �⃑� = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 , denoted as �⃑� ≺ �⃗� if and only if 𝑓𝑖(�⃑�) ≤ 𝑓𝑖(�⃑�) for all 𝑖 ∈

[1, … , 𝑚] and 𝑓𝑖(�⃑�) < 𝑓𝑖(�⃑�) for at least one 𝑖 ∈ [1, … , 𝑚]. 

A solution vector 𝑥∗⃑⃑⃑⃑⃑ is part of the Pareto Optimal Set 𝑃∗ if there does not exist other 

solution �⃑� such that �⃑� ≺ 𝑥∗⃑⃑⃑⃑⃑.  The Pareto Optimal front is then 𝑃𝐹∗ = {𝑓(�⃗�)|�⃗� ∈ 𝑃∗}. 

The analyzed power production system, as previously mentioned, is based on solar, 

wind and natural gas energy. The three objectives to be considered are: (1) the overall 

power production, (2) the overall production cost, and (3) the overall CO2 emission. 

The decision variables are the operation hours of the solar, wind and natural gas 

production systems, hs, hw and hg, respectively, and the natural gas power produced 

Pg, which is assumed without considering the ways to produce it.  
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2.1 Power Production Function 

This objective function represents the entire, monthly amount of power produced by 

the three sources. This objective function is constructed as shown in Eq. 1: 

𝑃 = 𝑓𝑠𝒉𝒔𝑃�̅� + 𝑓𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑓𝑔𝒉𝒈𝑷𝒈. (1) 

Decision variables are bolded. 𝑃�̅� and 𝑃𝑤
̅̅ ̅ are the estimation of the generated solar 

and wind power for any arbitrary month (explained later). 𝑃𝑔 is the generated natural 

gas power, considered as decision variable (assuming it could be controlled). Constants 

fs, fw and fg are the capacity factors of solar, wind and natural gas systems, respectively 

(see Table 1). 

Table 1. Capacity factors (percentage of input power that is effectively transformed into 

electrical power) of the three studied energy sources. 

Power Source Capacity Factor (%) 

Solar Power (fs) 33 

Wind Power (fw) 43 

Natural Gas Power (fg) 87 

To get all three objective functions to be minimized, this objective function, origi-

nally to be maximized, is transformed by using the concept of power relation as in 

Eq. 2: 

𝑃𝑅𝑇 =  
𝑁 ∗ 𝑃𝑆𝑊𝐺

𝑓𝑠𝒉𝒔𝑃�̅� + 𝑓𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑓𝑔𝒉𝒈𝑷𝒈

, (2) 

where PSWG is the current amount of energy produced by the three sources together. 

This value is approximately 7.07 MWh and it was measured for the month of August, 

2018 [12]. N is an increasing factor. In an ideal context, where renewable power is 

reinforced, the increasing factor is greater than one, so that the total energy from solar, 

wind and natural gas power is increased. For this study, this total energy production is 

encouraged to be doubled, then 𝑁 = 2.  

2.2 Production Cost Function 

The second objective function is the total, monthly production cost. Eq. 3 shows this 

objective to be minimized: 

𝐶 = 𝑐𝑠𝒉𝒔𝑃�̅� + 𝑐𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑐𝑔𝒉𝒈𝑷𝒈, (3) 

where constants cs, cw and cg are the production costs of solar, wind and natural gas 

systems, respectively (see Table 2). 
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Table 2. Production cost of solar, wind, and natural gas power systems. 

Power Source Production Cost ($/MWh) 

Solar Power (cs) 48.2 

Wind Power (cw) 33 

Natural Gas Power (cg) 15.5 

 Data from Tables 1 and 2 are approximations obtained from [13]. 

2.3 CO2 Emissions Function 

The third objective function is the monthly CO2 emissions caused by the three energy 

sources. This objective function to be minimized is introduced in Eq. 4: 

𝐸 = 𝑒𝑠𝒉𝒔𝑃�̅� + 𝑒𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑒𝑔𝒉𝒈𝑷𝒈, (4) 

where the CO2 emissions rates for the solar, wind and natural gas systems are es, ew and 

eg, respectively (see Table 3). 

Table 3. CO2 emissions rates (related with global warming [14]) for solar, wind, and natural gas 

power systems. 

Power Source 
CO2 Emissions Rate 

(gr/KWh) 

Solar Power (es) 48.2 

Wind Power (ew) 33 

Natural Gas Power (eg) 15.5 

The estimations of solar and wind power 𝑃�̅� and  𝑃𝑤
̅̅ ̅ , depend on the solar radiation 

and wind speed, so climate predictions are required. Climate is hard to predict. Moura 

and de Almeida proposed a climate model prediction for Portugal, based on previous 

data [15]. A similar model is used for the state of Oklahoma but using applicable data. 

A dataset was built in Microsoft Excel with measurements of solar radiation and wind 

speeds for each month of each year from 2003 to 2017, provided by MESONET, an 

environmental monitoring station available in the state of Oklahoma [16].    

The solar radiation measured by MESONET is in MJ/m2. It is multiplied by the total 

solar panels area and divided by the total number of seconds in each month. Months 

with 30, 31 and 28 days were considered. The result unit is the Watt (W). The wind 

speed is measured in miles per hour and only needs to be converted to m/s. 

3 NSGA-II and L-NSGA-II 

NSGA-II is a genetic algorithm (GA) adapted to solve multi-objective optimization 

problems. Besides those GA elements (tournament selection and crossover and muta-

tion operators), NSGA-II uses the so-called non-dominated sorting process to rank so-

lutions based on Pareto dominance from the union of parents and offspring.  

Those non-dominated solutions get rank 1 and they are separated from the afore-

mentioned union. 
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From the remaining solutions those non-dominated are assigned rank 2 and so on. 

The next population is chosen based on ranking. Furthermore, a crowding-distance 

measure in the objective space is used to choose among solutions with the same ranking 

to get a population with the same size to start the next generation. A general pseudocode 

is presented in Figure 1. 

L-NSGA-II keeps most of the original NSGA-II structure, except for adding a dif-

ferent population initialization method. Here, a hybrid chaotic model is defined for the 

initialization part. The usual initialization method is shown in Eq. 5: 

𝑥𝑗 = 𝑙𝑜𝑗 + (𝑢𝑝𝑗 − 𝑙𝑜𝑗)𝑢, (5) 

where u is a random number with uniform distribution; loj and upj are the variable 

boundaries. In L-NSGA-II, the random number u is substituted. First, for the current 

value of a counter k, there are two randomly found numbers (between 0 and 1) defined 

as part of the hybrid chaotic mapping model, uk and rk. The value of u for the next count 

k + 1 is defined in Eq. 6: 

𝑢𝑘+1 = 𝜇𝑢𝑘(1 − 𝑢𝑘), (6) 

where μ is a control variable, set as 0.5 for this study. The value of r for the step k + 1 

is calculated depending on the value of rk. This is displayed in Eq. 7: 

𝑟𝑘+1 = {

1

1.001
(2𝑟𝑘 + 0.001𝑢𝑘),      0 ≤ 𝑟𝑘 ≤ 0.5,

1

1.001
[2(1 − 𝑟𝑘) + 0.001𝑢𝑘],     0.5 < 𝑟𝑘 ≤ 1.

  (7) 

Then, the initialization of a single variable of the next step k + 1 is as in Eq. 8: 

𝑥𝑗 = 𝑙𝑜𝑗 + (𝑢𝑝𝑗 − 𝑙𝑜𝑗)𝑟𝑘+1. (8) 

Begin 

Generate an initial population Pop with POPSIZE solutions 

Evaluate each solution in the objective functions 

Apply non-dominated sorting to Pop 

While termination condition not reached 

Generate offspring population Offs 

Evaluate each offspring in the objective functions 

Apply non-dominated sorting to Pop U Offs 

Select, based on ranking and crowding distance, the next population from Pop U Offs 

End While 

End 

Fig. 1. NSGA-II general pseudocode. 
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According to the authors of this initialization proposal, this initialization model 

should contribute to the diversity of solutions in the Pareto front. Diversity is highly 

desired as it provides for more options to choose between advantages and disadvantages 

of each possible solution. It remains to be seen if this applies for the problem of interest 

in this paper. 

4 Experiments and Results 

The optimization of the power production was conducted following the most accurate 

conditions that were possible, i.e., actual wind farms (412 wind turbines) and solar 

panels (20,000) that are currently in use in Oklahoma were considered. The decision 

variables were constrained due to the real limitations of the power production systems 

and the problem requirements. The hours of operation could not exceed the number of 

hours in a month. The maximum number of days considered was 28 (as February is the 

shortest month), equivalent to 672 hours. The minimum number of hours allowed was 

240 hours. The maximum produced natural gas power was 7.07 MW and its minimum 

produced power was 4.88 MW. The boundaries of the decision variables are 

summarized in Table 4. 

Table 4. Boundaries of the decision variables. 

 hs hw hg Pg 

Maximum 672 hr 672 hr 672 hr 7.07 MW 

Minimum 240 hr 240 hr 240 hr 4.88 MW 

The simulations of power production were executed using MATLAB using an Intel 

Core i7 processor. A previously constructed NSGA-II framework by Seshadri was 

utilized and modified to run the problem objectives and also to code L-NSGA-II [17]. 

Both algorithms were tested using 100 generations and an initial population of 20 

individuals. Crossover and mutation were performed with 90% and 10% of 

probabilities, respectively, in both cases. 

Yen and He defined several metrics to test the performance of MOEAs [18]. In this 

work the Spacing metric was chosen as it measures how diverse or well distributed are 

the solutions in a Pareto front. Eq. 9 describes the spacing metric: 

𝑆 = √
1

�̅�
∑(𝑑𝑖 − �̅�)2  ,

�̅�

𝑖=1

 (9) 

where di is the Euclidean distance between a solution xi and its nearest solution, �̅� is the 

number of solutions in the Pareto front and �̅� is the average Euclidean distance between 

solutions. A lower value indicates a better solution distribution.  

For this paper, the experiments covered the month of May, 2022 and each algorithm 

was run 25 times. The spacing value was calculated for each one of the 25 fronts 

obtained per variant and the averages per variant are shown in Table 5. 
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Table 5. Average spacing for the Pareto Fronts of each variant for May, 2022. 

Algorithm Average Spacing 

NSGA-II 6.87 × 108 

L-NSGA-II 6.77 × 108 

Considering the fact that none of the results samples fit the normal distribution 

(based on the Kolmogorov-Smirnov test), the Wilcoxon Signed-Rank test was 

computed, and its result (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.672) indicated no significant differences 

between the two compared algorithms. Fig. 2 shows two Pareto fronts from both 

algorithms and a slightly better distribution provided by L-NSGA-II can be observed. 

The decision-making of the best solution from the obtained Pareto front was based 

on the third objective function, i.e., CO2 emissions. Such decision was based on the 

idea of getting the most environmentally friendly power production option. From the 

Pareto front in Fig. 2 (right), the individual that produced the lowest emissions was 

chosen (hs = 361.06 h, hw = 419.79 h, hg = 251.6 h and Pg = 6.837 MW), which 

corresponds to the L-NSGA-II front. It is worth noticing that the operation hours 

number (hg = 251.6 h) of the natural gas system was the lowest of the three sources, 

reducing the CO2 emissions. 

5 Conclusions and Future Work 

A comparison of a variant of the popular NSGA-II algorithm with the original to solve 

one instance of the power production in Oklahoma was presented in this paper. The 

variant was L-NSGA-II, which had a chaotic model to generate the initial population. 

The spacing metric was used for comparison purposes between the two algorithms 

when solving one instance of the problem related with one month (May 2022). The 

statistical results obtained suggested that the way L-NSGA-II generates the initial 

population does not produce any significantly distribution improvement in the Pareto 

front. The preference handling also showed that, when preferring the objective related 

to CO2 emissions, an environmentally friendly solution can be obtained.  

 

Fig. 2. Pareto front using NSGA-II (left) and using L-NSGA-II (right). 
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Future work consists on testing both variants in more problem instances and using 

other metrics like hyper-volume. Moreover, preference handling can be used within the 

search to focus only on well-distributed solutions favoring low CO2 emissions.  

Appendix 

The codes used and the climate database constructed for this paper can be found and 

downloaded following the link below: http://drive.google.com/drive/fold-

ers/1eNfMthw7v-i-gK_UkQx_zW6Wk3zFgt6J?usp=sharing 
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Causal Based Q-Learning
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Abstract. Reinforcement learning and Causal Inference are indispens-
able part of machine learning. However, they are usually treated sep-
arately, although that both are directly relevant to problem solving
methods. One of the challenges that emerge in Reinforcement Learning,
is the trade-off between exploration and exploitation. In this work we
propose to use causal models to attend the learning process of an agent.
The causal models helps to restrict the search space by reducing the
actions that an agent can take through interventional queries like: Would
I have achieved my goal if I had drop the passenger off here?. This
simulates common sense that lightens the time it takes the trial and
error approach. We attack the classic taxi problem and we show that
using causal models in the Q-learning action selection step leads to higher
and faster jump-start reward and convergence, respectively.

Keywords: reinforcement learning, causal models, taxi domain.

1 Introduction

Reinforcement learning (RL) is the study of how an agent can learn to choose ac-
tions that maximize its future rewards through interactions with an environment
[18]. RL is a technique to solve complex sequential decision making problems in
several domains as healthcare, economics, robotics, among others. Existing stud-
ies apply RL algorithms in discovering optimal policies for a targeted problem,
but ignores the abundant causal relationships present in the target domain.

Causal inference (CI) is another learning paradigm concerned at uncovering
the cause-effect relationships between different variables [16,15]. CI addresses
questions like: If I desire this outcome, what action do I need to take? So it may
provide the information for an intelligent system to predict what may happen
next so that it can better plan for the future. Given a causal structure of a system
it is possible to predict what would happen if some variables are intervened,
estimate the effect of confounding factors that affect both an intervention and its
outcome, but also, predict the outcomes of cases that are never observed before.

Both reinforcement learning (RL) and causal inference have evolved indepen-
dently and practically with no interaction between them, despite the fact that
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both are directly relevant to problem solving processes. Nonetheless, recent work
has focused on connecting these fields [8,9,20,5]. The goal of these works is to
show how RL can be made more robust and general through causal mechanisms
or vice versa. Also, a growth in what some are beginning to call (CausalRL) [12]
is expected to become an indispensable part of General Artificial Intelligence.
What CausalRL does seems to mimic human behaviors, learning causal effects
from an agent communicating with the environment and then optimizing its
policy based on the learned causal relations.

One of the challenges that emerge in Reinforcement Learning, is the trade-
off between try new actions (exploration) and select the best action based on
previous experience (exploitation) in a given state. Traditional exploration and
exploitation strategies are undirected and do not explicitly chase interesting tran-
sitions. Using predictive models is a promising way to cope with this problem. In
particular, these models may hold causal knowledge, that is, causal relationships.

In the present investigation we propose a method to guide the action selection
in an RL algorithm using one or more causal models as oracles. The agent can
consult those oracles to not perform actions that lead to unwanted states or
choose the best option. This helps the agent learn faster since it will not move
blindly. Through interventions in the causal model, we can make queries of the
type What if I do ...?, e.g., If I drop the passenger off here, will my goal be
achieved? This type of interventions can help to reduce the search space. An
important distinction is that, in order to use a causal model as in favor of a
reinforcement learning algorithm, we do not need it to be complete. In other
words, we can think of one or several partial models that express relationships
between variables of one or several subtasks of the general task we are trying
to solve.

The remainder of this paper is organized as follows. Section 2 reviews related
works. Section 3 describes in a very general way some concepts used in the
proposal. Section 4 describes the proposed method. In Section 5 the experimen-
tal set-up is described and the main results presented. Finally, in Section 6,
conclusions and future research directions are given.

2 Related Work

RL and CI have been widely explored separately [16,18]. Nevertheless, there are
recent studies that are looking to connect the concepts of these two areas to
set something they call Causal Reinforcement Learning, a paradigm that unites
both approaches to solve problems that cannot be solved individually in each
discipline [1,11]. The authors in [8], from a psychological approach, establish that
the model used in model-based reinforcement learning algorithms it is causal.
Taking an action in a state causes both a reward and a transition to a new state.
However, the manipulationist mechanism is not addressed or explained.

Some other works have focus on handling confounders (those variables that
affect action and output) in classic RL problems [2,12,7]. Besides that, it has
been show that causal reasoning can arise from RL [4,13].
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The idea of using knowledge from causal models to avoid or reduce trial-and-
error learning in RL has not been explored, as far as we know. Authors in [14]
propose a new method to speed up RL training through the use of a property
that they define as state-action permissibility.

The main idea is to have a predictor that guides the action selection step.
The predictor classifies whether an action leads to an optimal solution given
the action and the current state. What distinguishes our work from this one is
the use of causal model composed of state variables, actions and goals. Instead
of consulting the model for predictions we propose to make intervention type
queries so the agent is in the second rung of the ladder of causation.

3 Background

The definition of causality is that X causes Y , X → Y , if and only if an
intervention or manipulation in X has an effect on Y , keeping everything else
constant [17].

A graphical causal model is a pair M = 〈D,ΘD〉 consisting of a causal
structure D and a set of parameters compatible with D. A causal structure
of a set of variables V is a directed acyclic graph (DAG) in which each node
corresponds to a different variable, and each arc represents a direct relationship
among the corresponding variables [16]. The parameters ΘD assign a function
xi = fi(pai, ui) to each Xi ∈ V and a probability measure P (ui) to each ui,
where PAi are the parents of Xi in D and where each Ui is a random disturbance
distributed according to P (ui), independently of all other u.

To better illustrate the above, consider the following example. Travis is a taxi
driver whose main goal is to pick up a passenger at a certain point (passenger
position) and take him to his destination (destination position) and drop him
off there. For Travis, meeting his goal is based on his common sense. He doesn’t
try to pick a passenger when there is no passenger, drop him off there when he
doesn’t has arrived to the goal position, etc. We can create a causal model from
the rules that guide Travis.

The parameters of our causal model can be defined as Boolean variables like
in the set of equations 1, where u1, u2 ∈ {True, False}, u3, c4, c5 can take some
value that characterizes some position in the environment, e.g., coordinates in
a map (c4 and c5 can be constant values). The rest of ui, u

′
i ∈ {True, False}

variables can be seen as unusual behaviors.

Let’s suppose the case when onDestinationLocation = False, even when
the taxi is on the same position as the passenger, maybe the passenger position
has been updated without notifying the taxi driver, in this scenario u′6 = True.
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The counterpart happens when u6 = True, then the taxi is on the passenger
position, see eq. 1 (the corresponding causal structure is shown in Figure 1):

pickup = u1,

dropoff = u2,

cabPosition = u3,

destinationPosition = c4,

passengerPosition = c5,

onDestinationPosition = [(destinationPosition = cabPosition) ∨ u6] ∧ ¬u′6,
onPassengerPosition = [(passengerPosition = cabPosition) ∨ u7] ∧ ¬u′7,

inTheCab = [(pickup = True ∧ onPassengerLocation = True)

∨ u8)] ∧ ¬u′8,
goal = [(dropoff = True ∧ inTheCab = True∧

onDestinationLocation = True) ∨ u9] ∧ ¬u′9.
(1)

Causal models, unlike probabilistic models, can serve to predict the effect
of interventions. Interventions allow us to make queries of the type: Would the
passenger be inside the taxicab if we make sure that the passenger is picked
up here?. An intervention, which we denote by do(Xi = xi), means removing
the equation xi = fi(pai, ui) from the model and substituting Xi = xi in
the remaining equations [16]. The new model represents the system’s behavior
under the intervention do(Xi = xi) and, when solved for the distribution of Xj ,
produces the causal effect of Xi on Xj , which is denoted P (xj |do(Xi = xi)).

For example, to intervene on the variable inTheCab in our example would be
to set to one despite of whether the passenger was picked up. We would represent
this by replacing the equation inTheCab = pickup×onPassengerLocation with
inTheCab = True. Graphically, we can think of the intervention as “breaking
the arrows” pointing into inTheCab.

4 Proposed Method

Our hypothesis is that causal inference can assist RL in learning value functions
or policies more efficiently through the use of causal relations between state
variables or between actions and state variables and therefore reducing the state
or action space significantly.

To that end we proposed a method which consists of applying Algorithm
3 as a modification of the exploitation stage of Q-learning [19]. In general the
method operates as follows. The agent observes a state, and through queries to
one or more causal models, selects the action likely to allow the agent to meet
a goal. The parameters of each causal model are given by a probabilistic SEM.
The variables of the model are divided in three sets: state variables X, actions
A and targets Z. The variables are defined as follows: x = fx(Pax), x ∈ X,
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Fig. 1. Causal structure D for set of equations 1. The color of the nodes indicates to
which set of variables corresponds. Red for actions (A), Yellow for target variables (Z)
and blue for state variables (X). (Best seen in color).

z = fz(Paz), z ∈ Z where Pax ⊆ X ∪ A and Paz ⊆ X ∪ Z ∪ A. From the taxi
example, the corresponding variables from Equation 1 for X,A,Z can be set
as follows:

X = {passengerPosition, onPassengerPosition, cabPosition,
onDestinationPosition, destinationPosition},

A = {pickUp, dropOff},
Z = {inTheCab, goal}.

In Algorithm 3, B is a set of observable instantiated variables, i.e., given the
agent’s observation we assign values to state variables from X. We assume that
interventionist and observation distributions are already given so simply ask for
P (z|do(a), B) to obtain the causal effect in Algorithm 3 step 4. For our proposed
method to work, the following assumptions must be meet:

– Non-empty set Z of target variables, can be ordered by a priority function.
– Non-empty set A of actions variables, containts only boolean variables.
– The agent can select only one action in a given state.
– All parameters of each Causal Model are defined.

5 Experimental Set-Up and Results

To show that our approach promises to be a way to improve RL we integrate
it into the classical Q-learning algorithm. We replace the exploration step in
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Algorithm 1: Q-Learning

input : < S,A,R >
output: Table Q

1 Initialize Q(s, a) arbitrarily
2 Repeat (for each episode):
3 Initialize s
4 Repeat (for each step of episode):
5 Choose a from s using policy derived from Q(e.g., ε - greedy)
6 Take action a, observe r, s′

7 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′))−Q(s, a))]
8 s← s′

9 until s is terminal or invalid
10 return Q

Algorithm 2: Causal Q-Learning

input : < S,A,R >,G
output: Table Q

1 Initialize Q(s, a) arbitrarily
2 Repeat (for each episode):
3 Initialize s
4 Repeat (for each step of episode):
5 a← interventional based selection using (s, G)
6 If (a = None):
7 Choose a from s using policy derived from Q(e.g., ε - greedy)
8 Take action a, observe r, s′

9 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′))−Q(s, a))]
10 s← s′

11 until s is terminal or invalid
12 return Q

ε-greedy method to choose the actions by our method that queries the model.
The problem to solve is the classical taxi task [6]. Figure 11 graphically shows
the problem. A 5×5 grid world dwelled by a taxi agent. There are four locations
in this world, marked as R, B, G, and Y.

The taxi problem is episodic. In each episode, the taxi starts in a randomly-
chosen square. There is a passenger at one of the four locations (chosen ran-
domly), and that passenger wishes to be transported to one of the four locations
(also chosen randomly). The taxi must go to the passenger’s location, pick up
the passenger, go to the destination location , and drop the passenger off there.
The episode ends when the passenger is deposited at the destination location.

There are six primitive actions in this domain: (a) four navigation actions
that move the taxi one square North, South, East, or West; (b) a Pickup action;
and (c) a Drop off action. The six actions are deterministic. There is a reward
of -1 for each action and an additional reward of +20 for successfully delivering
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Algorithm 3: Action selection based on interventional queries.

Input : A state s sense by the agent, A set of causal models G, A set Z of
target variables of every g ∈ G ordered by a priority function

Output: An action a.
1 B ← get state observable values(s)
2 foreach z ∈ Z do
3 foreach a ∈ parents(z) where a is an action variable do
4 p← P (z = True|do(a = True), B)
5 . Here we get the causal effect on the target variable z through an

intervention in the action variable a using the causal model g
containing z.

6 if p > 0.5 then
7 return a
8 end

9 end

10 end
11 return None

Fig. 2. Sketch of the taxi enviroment [10].

the passenger. There is also a 10 point penalty for illegal pick-up and drop-off
actions [6]. There are 500 possible states: 25 squares, 5 locations for the passenger
(including when he’s inside the cab), and 4 destinations.

The causal model that is consulted to choose the actions is the presented in
Section 3, extending it to queries on movement actions, so that the agent does
not try move to positions where there are obstacles. For ease, we got rid of the
ui variables.
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Fig. 3. Average reward of Vanilla Q-learning and Q-learning guided by a causal model.

From the model in Figure 1 the color of the nodes indicates to which set
of variables corresponds. Red for actions (A), yellow for target variables (Z)
and blue for state variables (X). Since the environment is deterministic, there
is no need to compute a probability for the value of a target variable. Instead,
we evaluate whether the value of the target variable is True given the action
and B.

As our baseline we implement a vanilla version of the Q-learning algorithm
and we compare it with our version to which we denominate Q-learning + Causal
Model (CM). We run 50 times each version of the algorithm and in each execution
we compute the average reward per episode. Also, we set a qualifying mark
based on the one established by Open AI Gym 1. For this, we consider that the
algorithm had reached an optimal reward once the average reward is equal to 9.
So we assume that the algorithm that achieve it a smaller number of episodes
is faster. On average, vanilla Q-learning reaches that reward in 95 episodes and
Q-learning + CM in 65 episodes. In order to validate the results that the guided
Q-learning version of the algorithm performs better than the vanilla version,
we use the Wilcoxon Mann-Whitney rank sum test[3] with p < 0.001 to find
statistical significant differences.

Figure 3 show the average reward per episode in both version of the algorithm
for (average over 10 experiments). From the plot we can observe that our guided
version starts with a higher reward. This is to be expected because, the agent
doesn’t start blindly. For a range of episodes there is no difference between the
methods. However after a couple of hundred episodes, the Q-learnig guided by
a causal model seems to converge and keeps more stable.

1 https://gym.openai.com/envs/Taxi-v1/
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6 Conclusions

Reinforcement Learning has proved to be successful in decision making problems.
On the other hand, causal inference is clearly a novel but relevant and related
area with untapped potential for any learning task. The use of causal models
to provide auxiliary knowledge to an RL algorithm is a barely explored area.
However, from the results obtained, we can see that this type of knowledge has
the potential to accelerate RL. Although the problem attacked is simple because
all the causes we have are direct and observable, the experimental results show
that using causal models in the Q-learning action selection step leads to higher
and faster jump-start reward and convergence, respectively. As future work we
would like to try this action selection framework in Deep RL algorithms to solve
more complex problems. Coping with more complex problems involves tasks
not covered in this work, for example, undefined model parameters, incomplete
causal structure or an unreliable causal model. In addition, we would like to
explore the possibility that the causal model could also be learned during the
training of the RL algorithm.
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Abstract. Short-range communication protocols allow for vehicles to
exchange messages with the aim to provide new services for road security,
emergency and intelligent transportation systems. For these services,
each message has particular importance depending on where and when
the event has happened. The message’s importance degrades as time
elapses and distance between the source and recipient increases. The
similar effect can be observed on the water surface when an object falls on
it. The resulting wave loses its strength with distance from the drop point
and time. However, for vehicle communication, it is hard to establish this
degradation due to: its distributed and asynchronous nature and the
absence of permanent connections. This work presents an approach to
establish the message’s importance degradation while it is disseminated
throughout a road network. To determine this effect, a fuzzy-causal
closeness relation is used to combine information about traffic flow and
location with temporal restrictions, expressed as causal dependencies. To
face the lack of perdurable transmission links, the fixed communication
elements embedded into the transportation infrastructure are used as
communicant entities while vehicles are used as messages’ carriers. In
this way, the proposed solution operates with constant processing and
communication overhead while the system scalability does not depend
on the number of vehicles.

Keywords: spatiotemporal dependencies, fuzzy-causal closeness, capil-
lary waves, indirect communication, short-range vehicle communication.
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1 Introduction

Recent advances in wireless communication have allowed emerging standards
for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication,
such as Dedicated Short-Range Communication (DSRC) [4]. This communica-
tion is mainly oriented to offer new services or enhance the current Intelligent
Transportation Systems (ITS) such as lane change assistance, intersection coor-
dination, emergency response time reduction, among others [7].

For these services, it is crucial to determine how important is a message
depending on how far away and how long ago it was generated. For example, in
an emergency response time reduction, traffic lights need to be coordinated to
facilitate the circulation of emergency vehicles. In this scenario, an emergency
vehicle dynamically adapts its trajectory according to the decisions of its driver
and as a consequence, the nearest traffic lights must react to those changes.

As a message from the emergency vehicle is propagated through the road
network, i.e. the farther it travels and the more time passes, the message loses
its importance.

The same phenomenon can be observed on the water surface when an ob-
ject falls. It produces ripples originating at the drop point of an object that
propagates through the water surface. The resulting wave loses its strength with
distance travelled and as time passes.

This scenario is depicted in Figure 1, where both the accident and the
emergency vehicle generates capillary waves.

Even though this phenomenon is well studied by physics, it is hard to capture
it in a V2V communication due to multiple factors. On the one hand, there are
no perdurable transmission links among vehicles. On the other hand, interaction
among vehicles is performed in a distributed and asynchronous fashion. As
a result, it is hard to establish how far away and how long ago events have
happened.

This work presents an approach for indirect spatiotemporal short-range ve-
hicle communication inspired on capillary waves. To determine the messages’
importance degradation, this approach is based on two main components: an
indirect causal flooding protocol [3] and a fuzzy inference system to establish a
degree of spatiotemporal closeness among events, that work together.

Fig. 1. Vehicular “capillary waves”
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The causal flooding protocol was designed to face the lack of perdurable
transmission links. However, this protocol establishes only the event order, but
it cannot determine how long ago an event has happened.

This paper extends the flooding protocol by integrating a fuzzy inference
system designed to support the constraints imposed by the asynchronous nature
of interactions. In this sense, the spatiotemporal dependencies are estimated
by combining heterogeneous data about traffic flow and location with temporal
restrictions, expressed as causal dependencies.

By using these components, the solution does not require extra overhead.
As a result, the system’s scalability does not depend on the number of vehicles
present in the system.

This paper is organized as follows. Section 2 presents a short overview of re-
lated works. The background and definitions are defined in section 3. The system
model is presented in section 4. Section 5 describes the indirect spatiotemporal
approach. The conclusions are presented in section 6.

2 Related Work

Several approaches have been proposed to determine whether the message in
vehicular communication is important or not.

A Context-Aware Class Based Broadcast [2] proposes four different algo-
rithms for message importance estimation. These algorithms consider one or two
of the following parameters, without combining them: the number of retransmis-
sions, geographical area and the message expiration time. Independently such
algorithms, by considering these parameters, bring an exclusive binary result:
important or not.

The algorithm proposed in [8] uses the linear combination of physical distance
and expiration time, to determine a binary result, establishing whether the
message is important or not.

Another solution is presented in the Floating Content approach [1]. In this
work, the message is maintained among several surrounding devices located in a
specific geographical area without requiring a dedicated communication node. As
soon as the node leaves the area, the message is removed. Thereby, this solution
is also a binary one.

Even though multiple solutions for a message’s importance estimation exist,
they are all based on binary decisions. If conditions are met, the message is
considered important. Otherwise, the message is discarded. In addition, these
solutions consider only parameters separately or using linear combinations. Thus,
if one parameter falls outside of the threshold, the message is considered to be
non-important.

3 Background

Definition 1. Happened before relation. The HBR, denoted by “→”, is the least
strict partial order on a set of events E, such that:
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1. ∀a, b ∈ E, if a and b occur in the same process, and a was executed before b,
then a→ b.

2. ∀a, b ∈ E if a is the sending of a message m, and b is the reception of m
sent through a, then a→ b.

3. ∀a, b, c ∈ E, if a→ b and b→ c, then a→ c.
4. ∀a ∈ E, a 6→ a.
5. ∀a, b ∈ E, with a 6= b, if a→ b then b 6→ a.

4 System Model

For this work, a V2I DSRC-based communication [4] is modelled as a distributed
system based on a loosely coupled ad hoc asynchronous message-passing scheme.
Within the system, all entities (fixed and mobile) are represented as processes.
To be able to communicate both entities should be in the communication range
one with respect to another.

Any process performs instantaneous executions, referred to as events: the
sending and the reception of messages. This proposal assumes that for any pair
of events, a causal order can be established according to the happened before
relation (HBR) [5].

5 Indirect Spatiotemporal Communication Approach

5.1 Communication Protocol

The message dissemination between fixed and mobile entities is performed using
the indirect communication protocol introduced in [3]. Concurrently, the protocol
establishes the causal dependencies between each pair of exchanged messages.

The communication protocol is summarized in the following cases.
Case 1. Messages generated by fixed entity: Messages generated by com-

munication entities embedded into the transportation infrastructure are stored
in a buffer. When a vehicle approaches the fixed entity, the later sends the
message to the vehicle considering its movement direction. This entity sends the
message to the vehicles that are following a specific direction (one message’s
copy per direction). After the transmission, the message is removed from the
fixed entity’s buffer.

Case 2. Message received from fixed entities by vehicle: A vehicle stores
into its buffer messages received from fixed communication entities. The vehicle
holds the message until it can be sent to the next fixed communication entity
encountered.

Case 3. Messages received by fixed entities from vehicles: These messages are
handled in the following manner.

1. The message’s causal conditions imposed by HBR are verified. If HBR is
satisfied, the message is delivered.

2. Otherwise, the message is buffered for a ∆t time.
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(a) If during this time, the causal conditions become satisfied (due to other
messages being received), the message is delivered immediately.

(b) If the causal conditions are not satisfied after ∆t, the message is deliv-
ered, marking the previous non-delivered messages as lost.

3. After the message is delivered, it is transmitted using the same mechanism
as described in Case 1.

Case 4. Messages generated by a vehicle: Messages generated by vehicles are
stored separately from messages received from fixed entities until they can be
sent to the first encountered fixed entity. Delivered messages are handled in the
same way as other messages generated by fixed entities (Case 1).

5.2 Fuzzy-Inference System to Determine the Message’s Importance

The communication protocol described above disseminates messages and ensur-
ing that HBR dependencies are not violated. In this way, the temporal coherence
of the exchanged information is guaranteed.

The message’s dissemination consumes time which implies an induced delay
in its delivery. How long ago an event has happened can be estimated considering
the distance between the sender and receiver as well as the followed transmission
path and the traffic density. This estimation can be done in a similar form as
humans estimate the trip delays by considering the transportation mode and the
trip length.

The less traffic density (<90 veh/km/lane), the fewer vehicles are available
to transmit messages, resulting in a greater delay for message transmission. The
medium traffic density (90 - 150 veh/km/lane) offers the ideal message prop-
agation conditions as vehicles are eagerly available and their movement is not
restricted by other vehicles. When the traffic density is high (>150 veh/km/lane),
the vehicles move slowly. An intuitive assumption is that the vehicle’s slow speed
will increase the transmission delays, however, this does not happen. This effect
is not produced due to the possibility of passing messages from vehicle to vehicle,
thus the slow vehicle’s speed has no repercussions.

In vehicular communication, a message is retransmitted, due to propagation,
multiple times between fixed entities and vehicles. Each retransmission induces
a transmission delay. The number of retransmission represents the dissemination
path length that the message has followed.

Due to the communication protocol only considers HBR-based causal depen-
dencies to establish a timeline to order the received messages, it is not possible
to determine how long ago an event a has happened before an event b. In this
paper, a fuzzy inference system (FIS) was designed to relate heterogeneous data
about traffic flow and location with temporal restrictions, expressed as causal
dependencies to determine the causal closeness between two events. The FIS is
based on the following inference:

“How far away, how long ago and how dense the traffic is implying how close
or how important the message is”.
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Fig. 2. Fuzzy inference system.

To estimate the message importance, we consider the following linguistic
variables:

– Path length, whose universe of discourse is temporal data, expressed as
causal dependencies.

– Physical distance, whose universe of discourse is the physical location.
– Traffic density, whose universe of discourse is the number of vehicles in a

road segment.
– and Fuzzy-causal closeness, whose universe of discourse is the importance of

the message.

The fuzzy sets, related to the four linguistic variables, are bounded as follows.
The path length is bounded between 0 and 16 retransmissions. For the physical
distance, the minimum and maximum values are set to 0 and 4 blocks. The
boundaries for the traffic density values are 0 and 240 veh/km/lane. Finally, the
fuzzy causal closeness or message importance is represented as a value between
0 and 1, where 0 means not important and 1 means very important.

By considering triangular membership functions for the fuzzy sets, the degree
of fuzzy-causal closeness is determined through a Mamdani FIS [6]. The gener-
alized version of this system is presented in Figure 2. In this way, the message’s
importance for a receiver can be estimated by defuzzification the outputs through
a weighted average method.

6 Conclusions

This paper presents an indirect spatiotemporal short-range vehicle communica-
tion approach inspired on capillary waves. This approach extends the communi-
cation protocol [3] with the fuzzy inference system, that is designed to estimate
the message’s importance.

The proposed solution, determines the message’s importance at each entity
individually by combining heterogeneous data about traffic flow and location
with temporal restrictions, expressed as causal dependencies.

An advantage of the approach is that it operates with constant communica-
tion and processing overhead and the amount of control information does not
depend on the number of vehicles in the system.
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Abstract. Most algorithms for causal discovery require large sample
sizes for finding Markov equivalence classes that include the structure of
the true causal probabilistic graphical models. In some situation collect-
ing data could be difficult, especially for learning models that encode
the specific causal relations of a particular subject of a population.
Although transfer learning techniques have shown to be useful for im-
proving predictive associative models learned with limited datasets, their
application in the field of causal discovery has not been sufficiently
explored. In this paper, we explore transferring weighted instances of
auxiliary datasets for improving Markov equivalence classes learned with
otherwise limited datasets. A knowledge transfer algorithm extended
from the Greedy equivalence search algorithm that locally selects the
instances of the best auxiliary datasets is proposed. Preliminary results
using synthetic datasets suggest that our knowledge transfer algorithm
outperforms the base algorithm, increasing the adjacency recall from
0.58± 0.28 to 0.94± 0.13.

Keywords: causal discovery, transfer learning, causal probabilistic graph-
ical models.

1 Introduction

Causal probabilistic graphical models (causal PGMs) are useful tools for enco-
ding causal relations between variables of closed systems and provide information
to make predictions under manipulations. From observational data, it is possible
discovering Markov Equivalence Classes (MECs) that represent the structure of
a set of equivalent causal PGMs with the same joint probability distribution [2].

Learning MECs that include the true causal structure from a limited sample
size could be challenging using many existing algorithms, since they find these
MECs in the large sample limit [18, 5]. In some situations, it can be difficult co-
llecting data, especially for learning casual PGMs that encode the specific causal
relations for a particular member of a population. Transfer learning has shown
to be useful for improving models learned with limited datasets, allowing the
use of auxiliary data that come from different models with different probability
distributions [15].
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Many works have explored knowledge transfer for learning PGMs. However,
most of these studies have relied on the learning of associative PGMs [10, 12–14].
Limited work [8] has been done on learning causal PGMs from observational
data. Although other algorithms have been proposed for learning MECs from
multiple datasets, their aim is different of that for knowledge transfer algorithms.
These algorithms aim to discover MECs that include the common causal rela-
tions in all datasets, assuming that all datasets include a representative number
of samples [3, 16, 17].

The knowledge transfer algorithm proposed in [8] is a modification of the PC
algorithm that assumes all auxiliary datasets have the same relevance for learning
a target MEC, ignoring their differences in probability distributions. Moreover,
like other PC-based algorithms, require large sample sizes for the independence
conditional tests [5]. Score-based algorithms have shown to be more accurate for
learning MECs with small samples than constraint-based algorithms as PC [11].
In this paper, we present a preliminary knowledge transfer algorithm, based on
the score-based algorithm, Greedy Equivalence Search [2], for improving MECs
learned with limited datasets. We propose locally transferring the instances of the
best auxiliary datasets, considering their differences in probability distributions
with that of the target dataset.

The paper is organized as follows. In Section 2 concepts related to graphs and
the Greedy Equivalence Search algorithm are described. Our knowledge transfer
algorithm is presented in Section 3. In Section 4, the experimental results are
shown. Finally, the conclusions of this paper are presented in Section 5.

2 Preliminaries

2.1 Graph Concepts

Definition 1. A graph is a pair G = (V,E) formed by a set of nodes V =
{V1, ..., VN}, and a set of edges E ⊂ V ×V.

Two nodes are adjacent in a graph G, if there is an edge associating them.
When a graph only contains directed edges in the form (V1 → V2), it is called a
directed graph. In a directed edge in the form V1 → V2, V1 is said to be the
parent of V2, and V2, the child of V1. The set of parents of a node V is denoted
as Pa(V ).

Definition 2. Within a graph G, a directed path between two nodes V1 and
Vk is a sequence of nodes, (V1, V2, ..., Vk), starting at V1 and ending at Vk, where
k ≥ 2, and Vi → Vi+1 ∈ E for i = 1, ..., k − 1.

A directed path where the last node coincides with the first one is a directed
cycle. A directed graph in which there are no directed cycles is called a directed
acyclic graph (DAG). If an acyclic graph contains directed and undirected
edges, it is called a partially directed graph (PDAG).

The undirected graph resulting from ignoring the direction of edges in a DAG
is the skeleton of the DAG.
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A v-structure in a DAG is an ordered triple of nodes (X,Y, Z), such that,
the edges X → Y and Y ← Z are in the DAG, and there is no edge between the
nodes X,Z [2].

Definition 3. A Markov equivalence class is a set of directed acyclic graphs
that have the same skeletons and the same v-structures [6].

2.2 Greedy Equivalence Search Algorithm

Greedy Equivalence Search (GES) [2] is a score-based algorithm for heuristically
searching the best Markov equivalence class that represents a set of equivalent
DAGs including a true causal probabilistic graphical model. Given a dataset
D = {d1, ..., dm} containing m instances, where each di represent an assignment
of value to each variable of a set X = {X1, X2, X3, ..., Xn}, the best MEC G∗ =
(X,E) is found by maximizing a scoring function such that:

G∗ = arg max
G∈GC

score(G,D), (1)

where score(G,D) is a scoring function that measures the adjustment of D with
a candidate MEC G, and GC is the set of all MECs defined over X.

In the GES algorithm, Bayesian Dirichlet equivalent and Uniform (BDeU)
score function is used for learning MECs defined over discrete variables with com-
plete datasets D (without missing values). BDeU score is a descomposable func-
tion that can be expressed as the product of local functionsBDeU(Xi,Pa(Xi),D)
that only depends of a node Xi ∈ X and their parents Pa(Xi) as follows [7]:

BDeU(G,D) =

n∏
i=1

{BDeU(Xi,Pa(Xi),D)} , (2)

BDeU(Xi,Pa(Xi),D) =

qi∏
j=1

Γ (αij)

Γ (αij +Nij)

ri∏
k=1

Γ (αijk +Nijk)

Γ (αijk)
, (3)

where n is the number of nodes in G, qi is the number of values of Pa(Xi), ri
is the number of values of Xi, Nijk is the number of cases in which Xi = k and
its parents pa(Xi = k) = j, Nij =

∑
kNijk, and αijk = 1

riqi
is a Dirichlet prior

parameter with αij =
∑

k αijk.

BDeU score assigns the same value to all equivalent DAGs in the same MEC.
It is used in each iteration of the GES algorithm for evaluating the improvement
of the score when an edge is added or deleted. In the first stage of GES, starting
with a empty graph, the scoring function is used for heuristically searching the
edges that could be added of a MEC. And in the second stage, for searching the
edges that could be removed of a MEC.
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3 Instance-Based Transfer Learning GES

Our proposed preliminary algorithm, denominated as Knowledge Transfer Lear-
ning with Weighted instances GES (KTL-WeGES), is an extension of the Greedy
Equivalence Search (GES) algorithm that using the instances of two auxiliary
observational datasets tries to improve the skeleton identification of Markov
equivalence class (MEC) learned with limited dataset.

Under the assumptions of causal sufficiency and faithfulness conditions, the
best target MEC G∗T is found by maximizing a scoring function that combines
the instances of target DT and auxiliary DS datasets:

G∗T = arg max
GT∈GC

score(GT ,DT ,DS). (4)

For combining the instances of target and auxiliary datasets, local knowledge
transfer of the auxiliary datasets is explored. In this local knowledge transfer,
weighted instances of the auxiliary datasets are used for finding the best local
structure for a target MEC composed by a node Xi ∈ X with their parents
PaT (Xi). The local BDeU score defined in the Equation 3 is used for evaluating
the adjustment of the combination of weighted instances of the auxiliary DS

and target DT datasets, with a candidate local structure for a target MEC. In
this equation, Nijk counting the combination of auxiliary and target instances
as follows:

Nijk = (Nijk)T +Wi(Nijk)S , (5)

where (Nijk)T represents the number of cases in DT in which Xi = k and its
parents paT (Xi = k) = j, and (Nijk)S , the number of cases in DS in which
Xi = k and its parents paT (Xi = k) = j. Wi encode the relatedness of the
auxiliar dataset with the candidate local structure for a target MEC.

In the estimation of this relatedness, differences in the conditional proba-
bility distribution of Xi and its parents PaT (Xi), between the target dataset
PT (Xi|PaT (Xi)) and the auxiliary dataset PS(Xi|PaT (Xi)), are considered.
The difference between these distributions is evaluated with the Kullback-Leibler
divergence DKLD [1] as follows:

DKLD(PT (Xi|PaT (Xi)), PS(Xi|PaT (Xi))) ≈
∑

xi,paT (xi)

log

(
PT (xi|paT (xi))

PS(xi|paT (xi))

)
.

(6)

Using this difference, Wi is estimated by:

Wi = 2−|DKLD(PT (Xi|PaT (Xi)),PS(Xi|PaT (Xi)))|. (7)

With this function, when the difference between target and auxiliary datasets
increases, it is penalized with weights nearly to zero; and it assigns weights nearly
to one, to small differences lower to one.
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4 Experiment and Results

4.1 Generation of Synthetic Datasets

Synthetic datasets are generated from ground truth Bayesian networks which
are BN with known structure and parameters. Target and auxiliary datasets are
generated in the following form [10]. Target dataset is sampled from the ground
truth BN, and auxiliary datasets, from related BNs. Related BNs are generated
modifying in certain percent (pMod) the edges of the ground truth models,
adding pMod edges, followed by deleting edges in the same pMod percent.
Increasing the pMod, we generate BN less related to the ground truth model.
From each related BN are estimated its parameters using a dataset sampled from
the ground truth BN. Each auxiliary dataset is sampled from its corresponding
related BN using forward sampling, in which the values of each variable Xi are
sampled in ancestral order (parents before their children), in such form that its
values xi are drawn from P (xi|pa(xi)).

4.2 Experimental Design

In this experiment, we hypothesized that the KTL-WeGES algorithm outper-
form the GES algorithm. The performance of the KTL-WeGES algorithm was
evaluated in its ability for finding the skeleton of the ground truth models. In
the evaluation, the Coma [4] and Asia [9] binary BNs with five and eight nodes,
respectively, were used as ground truth models. The edges of the original BNs
were modified in 10% and 40%, for generating the two related BNs. Considering
extreme cases of relatedness (most and least related) were selected these param-
eters. Coma and Asia BNs and their corresponding related BNs are presented in
Figures 1 and 2, respectively. Datasets with 1600 and 12800 samples for Coma
and Asia were used for estimating the parameters of related BNs.

Taking into account that after modifying the ground truth BNs would in-
crease the number of parents for some nodes. The sample size was estimated
using samplesize = 100(2k), considering that a node in a related BN may
have at most k = n − 1 parents (where n is the number of nodes in the
BN). For each auxiliar dataset, 1600 samples from related BNs of Coma and
12800 samples from related BNs of Asia (using the same formula for the pa-
rameters estimation), were obtained. Ten datasets varying the sample size were
obtained for the target domain. For Coma, the set of target datasets includes
datasets with size {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, and for Asia,
with {80, 160, 240, 320, 400, 480, 560, 640, 720, 800}. Ten runs of this scenario were
used to evaluate the algorithms.

The models obtained by the algorithms were evaluated using normalized
structural Hamming distance (NSHD), adjacency precision (TPR), and adja-
cency recall (TDR). Normalized structural Hamming distance is the minimum
number of edge insertions, deletions, and changes needed to transform a model
into another. Adjacency precision is the ratio TP/(TP + FP ), and the ratio
TP/(TP + FN) is the adjacency recall.
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Where TP is the number of adjacencies that are in common in the estimated
model and ground truth model without considering the edge orientation; FP is
the number of adjacencies that are present in the estimated model but not in
the ground truth model; and FN is the number of adjacencies that are present
in the ground truth model but not in the estimated model [17].

(a) (b) (c)

Fig. 1. (a) Coma and its related BNs created by modifying the edges in (b) 10% and
(c) 40%.

4.3 Results

The experimental results are summarized in Tables 1 and 2 for Coma and Asia,
respectively. In these tables, the averages for each metric, over the ten test target
datasets and all experimental runs, obtained by transferring instances from the
most related, the least related, and both auxiliary datasets, are presented.

The results show that KTL-WeGES seems to improve the skeleton identifi-
cation of the ground truth models with respect to GES. In the case of Coma,
considering the results for NSHD (the best NSHD is obtained when it is zero),
KTL-WeGES seems to decrease the differences between the skeleton of the
true and that one of the estimated model. The results for this model also
show that, although the performance of the TPR decrease, KTL-WeGES are
discovering more number of edges, increasing the TDR. The results for Asia
show an improvement in the TPR and TDR rates.
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(a) (b) (c)

Fig. 2. (a) Asia and its related BNs created by modifying the edges in (b) 10% and
(c) 40%.

Table 1. Averages ± standard deviations of TPR, TDR, and NSHD for Coma.

Method TPR TDR NSHD

GES 0.90± 0.13 0.59± 0.25 0.54± 0.25

KTL-WeGES 0.86± 0.11 0.94± 0.10 0.40± 0.31
(most related)

KTL-WeGES 0.85± 0.09 0.98± 0.06 0.36± 0.28
(least related)

KTL-WeGES 0.84± 0.09 0.96± 0.08 0.38± 0.27
(both auxiliar datasets)

They also show that the differences between the skeleton of the true and that
one of the estimated model increase, which indicate that the estimated model
has more edges than the true model (spurious edges).

From the results, it also can be observed that KTL-WeGES with all strategies
(transferring from all datasets, the best and least related auxiliary dataset)
improves the TDR, being better transferring from the least related auxiliary
dataset. Although, the NSHD and TPR results show that KTL-WeGES discovers
more spurious edges when the number of nodes increases. It indicates that the
scoring function prefers dense graphs, and hence KTL-WeGES has problems for
deleting edges.

Regarding execution time for learning a single MEC on average, KTL-WeGES
takes 0.46 and 10.78 seconds for learning models of Coma and Asia, respectively,
with a 1.8 GHz Intel Core i7 processor with 8 GB RAM, using Matlab 2019a.
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Table 2. Averages ± standard deviations of TPR, TDR, and NSHD for Asia.

Method TPR TDR NSHD

GES 0.71± 0.27 0.58± 0.31 0.98± 0.44

KTL-WeGES 0.95± 0.07 0.90± 0.19 1.94± 0.33
(most related)

KTL-WeGES 0.97± 0.05 0.90± 0.19 1.98± 0.35
(least related)

KTL-WeGES 0.97± 0.05 0.90± 0.19 1.99± 0.37
(both auxiliar datasets)

5 Conclusions

A preliminary instance-based transfer algorithm for improving Markov equiva-
lence classes learned with limited datasets was presented. Our algorithm locally
selects the instances from the two auxiliary datasets for searching the best set
of parents of each node in a target MEC.

Experimental results show that our algorithm outperforms the GES algo-
rithm in the skeleton identification for MECs, transferring weighted instances
from the most related, the least related and both auxiliary datasets. Preliminary
results suggest that our algorithm seems to be promising for discovering MECs.

As future work, we consider extending the local knowledge transfer of the
weighted-instances for more than two auxiliary datasets and also analyzing other
scoring functions and score-based algorithms that have shown better perfor-
mance deleting false edges. Also, it is contemplated improving the algorithm for
discovering the v-structures of MECs.
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Abstract. Classical results of Decision Theory, and its extension to
a multi-agent setting: Game Theory, operate only at the associative
level of information; this is, classical decision makers only take into
account probabilities of events; we go one step further and consider causal
information: in this work, we define Causal Decision Problems and extend
them to a multi-agent decision problem, which we call a causal game.
For such games, we study belief updating in a class of strategic games in
which any player’s action causes some consequence via a causal model,
which is unknown by all players; for this reason, the most suitable model
is Harsanyi’s Bayesian Game. We propose a probability updating for the
Bayesian Game in such a way that the knowledge of any player in terms
of probabilistic beliefs about the causal model, as well as what is caused
by her actions as well as the actions of every other player are taken into
account. Based on such probability updating we define a Nash equilibria
for Causal Games.

Keywords: causal games, causal Nash equilibrium.

1 Introduction

Causal reasoning is a constant element in our lives as it is human nature to
constantly ask why. Looking for causes is an everyday task and, in fact, causal
reasoning is to be found at the very core of our minds [40, 8]. It has been argued
that the brain itself is a causal inference machine which uses effects to figure out
causes in order to actively engage with the world [10, 7, 25].

An important aspect of acting in the world is being able to make decisions
under uncertain conditions [8, 25]. In their seminal work [39], von Neumann and
Morgenstern answered how to make choices if rational preferences are assumed and
the decision maker knows the stochastic relation between actions and outcomes:
maximize expected utility. If such relation is unknown, then J.L. Savage showed in
[33] that a rational decision maker must choose as if is maximizing her expected
utility with respect to a subjective probability distribution.
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The previous results of von Neumann-Morgenstern and Savage provide formal
criteria for decision making if rationality is assumed and information about the
environment is considered only at the asociative (i.e., probabilistic) level.

These criteria are the basis for many of the techniques used in Artificial
Intelligence; for example, Reinforcement Learning algorithms learn optimal
policies that satisfy the Bellman Equations [37, 31]; therefore, any action
prescribed by an optimal policy achieves the maximum expected utility as
shown in [41]. Several studies have considered how human beings use causal
information when making decisions with uncertain outcomes. It is known that
humans tend to prefer causal information over purely probabilistic data [38]; and,
in fact, it is shown in [17] that acting in the world is conceived by human beings
as intervening on it; Therefore, it does not come up as a surprise that humans
are able to learn and use causal relations while making single choices as well as
in sequential decisions as shown in [8, 35, 11, 28, 24, 15, 27, 16, 32, 14].

Decision problems faced by a rational agent usually involve the decisions made
by other agents as well as other, possibly unknown, factors. As seen in several
applications, interactive reasoning is a fundamental aspect of human every-day
reasoning and it should be addressed by any intelligent agent as argued in [25].
We consider to be of interest the multi-agent setting for causal decision making;
for this reason, we consider the interaction of several rational and causal-aware
decision makers whose decisions affect each other.

Game Theory [29] deals with situations in which several rational decision
makers, or players, interact while pursuing some well-defined objective; the case
in which decision makers make a choice simultaneously without knowing the
choice made by the other players is called a strategic game; a well-known strategic
game is the famous prisoners’ dilemma in which two detainees must choose
between confessing or remaining silent and both know the consequences of any
combination of actions, what is ignored by each player is the decision made by
the other.

When players ignore both the actions made by other players as well as
the knowledge that made them choose a certain action, is called a game with
incomplete information, or a Bayesian Game which was introduced by Harsanyi
in [18, 19, 20]. In this work we will use the Bayesian Game model in order to study
what happens when several decision makers have certain knowledge about an
environment which is controlled by some, unknown but fixed, causal mechanism.
We will first study one-player games, or decision problems, in which the player’s
actions cause some consequence according to some unknown causal model; for
this case, we will provide a rational choice criterion which will serve us to define
a Nash equilibrium in Causal Games.

2 Causation and Classical Decision Problems

2.1 Causation

The notion of causation deals with regularities found in a given environment
which are stronger than probabilistic (or associative) relations in the sense that
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a causal relation allows for evaluating a change in the consequence given that
a change in the cause is performed, while probabilistic relations only capture
patterns that appear on observed data. For example, when training only on
observed samples (x, y), a Bayesian Network can be equally trained as X → Y
or Y → X, see [2] Apendix A for a theoretical argument.

We adopt here the manipulationist interpretation of Causality as expressed by
Woodward in [42]. The main paradigm is clearly expressed in [6] as manipulation
of a cause will result in a manipulation of the effect. Consider the following
example from [42]: manually forcing a barometer to go down won’t cause a storm,
whereas the occurrence of a storm will cause the barometer to go down.

We restrict ourselves to probabilistic causation and adopt the formal definition
of Causality given in [36]; i.e., a stochastic relation between events which is
irreflexive, antisymmetric and transitive; such formal definition is encompassed
by the manipulationist interpretation. Similar descriptions of the manipulationist
approach can be found in [21] and [9]. Causal inference tools, such as Pearl’s
do-calculus, stated in [30], allows to find the effect of an intervention in terms
of probabilistic information when certain conditions are met. For what remains,
we assume the causal axioms found in [36] with the condition known as causal
sufficiency.

2.2 Classical Decision Theory

Classical decision making consist of a set A of available options to a rational
decision maker, and a family E of uncertain events which will affect the conse-
quence of the action made by the decision maker; any knowledge by the decision
maker of such uncertainties is available only at the associative, or probabilistic,
level of information. We now state the formal framework for classical decision
making as we will use it in order to build upon the causal version of it:

Definition 1. An uncertain environment is the tuple (Ω,A, C, E). Where A is
a non-empty set of available actions, C a set of consequences and E an algebra of
events over Ω.

When we consider the preferences of some decision maker over the set of
consequences of some uncertain environment we have a Decision Problem under
Uncertainty:

Definition 2. A Decision Problem under Uncertainty is an uncertain environ-
ment (Ω,A, C, E) plus a preference relation � defined over C.

2.3 Causal Environments and Causal Decision Problems

In this section we define a Causal Environment to be an uncertain environment
for which there exists a Causal Graphical Model (CGM) G which controls the
environment. Details on CGMs can be found in [22].

Definition 3. A Causal Environment is a tuple (Ω,A,G, C, E) where (Ω,A, C, E)
is an uncertain environment and G is a CGM such that the set of variables of G
correspond to the uncertain events in E.
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2.4 Rational Choice in Causal Environments

Consider a decision maker who knows that any action she takes will cause a
certain action, but she does not explicitly knows the form of such causal relation,
she only have probabilistic beliefs about such relation. We define in this section
a formal framework for studying such situations.

Definition 4. We define a Causal Decision Problem (CDP) as (A,G, E , C,�)
where (A,G, E , C) is a Causal Environment and � is a preference relation.

For the CGM in a given CDP we will distinguish two particular variables: one
corresponding to the available actions, and one corresponding to the caused
outcome. We are considering that only one variable can be intervened upon and
that the values of such variable represent the actions available to the decision
maker; i.e., the value forced upon such variable under an intervention represents
the action taken by the decision maker. The intuition behind the definition of a
Causal Decision Problem is this: a decision maker chooses an action a ∈ A, which
is automatically inputed into the model G, which outputs the causal outcome
c ∈ C. We say a CDP is finite if the set A is finite. We now provide a decision
criterion for rationally choosing in a Causal Decision Problem.

Theorem 1. In a finite Causal Decision Problem (A,G, E , C,�), where G is a
Causal Graphical Model, we have that the preferences � of a decision maker are
Savage-rational if and only if there exists a probability distribution PC over a
family F of causal models such that for a, b ∈ A:

a � b if and only if:∑
c∈C

u(c)

∑
g∈F

Pg(c|do(a))PC(g)

 ,

≥∑
c∈C

u(c)

∑
g∈F

Pg(c|do(b))PC(g)

 ,

where Pg is the probability distribution associated with the causal model g.

Proof. The decision maker is facing an environment in which any action she takes
will stochastically cause an outcome c ∈ C. For this reason, the decision making
is facing a very particular case of decision making under uncertainty. Assuming
rationality, we invoke Savage’s Theorem [33, 23, 12] to obtain a utility function
uS and a probability measure PS which satisfy that the preference relation is
represented by the expectation of uS with respect to PS .

In such a causal environment, the CGM G contains all of the information
which connects actions, uncertain events and outcomes, and noting that we can
identify any action a with {cj |Ej : j ∈ J} where J a countable set of indexes [3]
we have that:

EPS [u(c)] =
∑
j∈J

u(cj)P
S(Ej).
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For each action a = {cj |Ej : j ∈ J}, PS(Ej) is the probability of causing
consequence cj by choosing action a. In order for the decision maker to find the
probability of a certain consequence cj given that an action a is performed then
she must have in mind a single causal model g and a way to assign probabilities
over a family of causal models; i.e., the uncertainty component PS(Ej) is formed
by two parts: a distribution PC which represents the degree of belief of the
decision maker about a specific model g being the true one, and within g, a
distribution Pg used to calculate the probability of causing some consequence cj
given that action a is chosen. Using the Caratheodory Extension Theorem [1] a
probability measure PC whose support is a sufficiently general family of causal
models F can be shown to exist. For g ∈ F , the decision maker considers g
to be the true causal model with probability PC(g), and within g, we use the
classical von Neumann-Morgenstern Theorem in order to obtain the best action
(see section 4.1 of [30] for details). Let Pg the probability distribution associated
with the causal model g.

Then:

EPS [u(c)] =
∑
j∈J

u(cj)P
S(Ej), (1)

=
∑
j∈J

u(cj)

∑
g∈F

Pg(cj |do(a))PC(g)

 . (2)

We have shown what is the expected utility for some action a ∈ A, and by
Savage’s Theorem the result follows.

2.5 Interpretation

Theorem 1 says that a decision maker who faces a Causal Decision Problem
is considering a probability distribution PC over a family F and, within each
structure, using the term Pg(c|do(a)) in order to find the probability of obtaining
a certain consequence given that the intervention do(a) is performed; in this way,
the optimal action a∗ is given by:

a∗ = argmax a∈A
∑
c∈C

u(c)

∑
g∈F

Pg(c|do(a))PC(g)

 . (3)

We note that a∗ is obtained by taking into account the utility obtained by every
possible consequences weighted using both the probability of causing such action
within a specific causal model g and the probability that the decision maker
assign to such g ∈ F .

We are considering a normative interpretation for Theorem 1 according to
which a decision maker must use any causal information in order to obtain the
best possible action.

Such action must be obtained by considering the beliefs of the decision maker
about the causal relations that hold in her environment (the distribution PC),
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how such relations could produce the best action when considered as if they
were true (distribution Pg), and the satisfaction (utility u) produced by the
consequences of actions [22].

3 Classical Strategic Games

A strategic game is a model of a situation in which several players must take an
action and afterwards they will be affected both by the outcome of their own
action as well as the actions of the other players. In a strategic game it is assumed
that no player knows the action taken by any other players; this is:

Definition 5. a strategic game ([29]) consists of:

– A finite set N of n players.

– For each player, a nonempty set Ai of available actions.

– For each player, a preference relation �i defined over A = A1 × · · ·An.

Definition 6. A Nash equilibrium of a strategic game G = (N, (A)i∈N , (�i)i∈N )
is a vector of strategies a∗ = (a1, a2, ..., an) such that:

(a∗−i, a
∗
i ) �i (a∗−i, bi) for all bi ∈ Ai,

where a−i = (a1, ..., ai−1, ai+1, ..., an).

This is, in a Nash equilibrium no player can find a better action given the actions
taken by the rest of the players. We adopt here the deductive interpretation
of an equilibrium, according to which an equilibrium results from rationality
principles [4, 5].

4 Causal Games

In this section, we define a causal strategic game as a strategic game within a
causal environment; this is, consider a strategic game between N rational players
who are situated in a causal environment. We assume that it is common knowledge
the causal nature of the environment as well as the rationality assumption for
each player. We also assume that the causal mechanism, which represented by
a Causal Graphical Model G, remains fixed and it is unknown for each player.
In this game, players ignore the actions taken by any other player, and since
the causal model which controls the environment is unknown by every player,
then players also ignore the information that players will use in order to take
their respective actions: for this reason, we will work within the framework of
bayesian games.
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4.1 Bayesian Games

Strategic games are games in which no player knows the action taken by the
other players; we now consider a type of game in which no player knows both the
actions taken by any other player, nor the private information that made each
player to take any action. Such model is called a Bayesian Game, introduced in
[18, 19, 20]

Definition 7. A Bayesian strategic game([29]), consists of:

– A finite set N of players.
– A finite set Ω of states of nature.
– For each player, a nonempty set Ai of actions.
– For each player, a finite set Ti and a function τi : Ω 7→ Ti the signal function

of the player.
– For each player, a probability measure pi over Ω such that pi(τ

−1
i (ti)) > 0

for all ti ∈ Ti.
– A preference relation �i defined over the set of probability measures over
A×Ω where A = A1 × · · ·An.

4.2 Bayesian Causal Games

In this section, we consider a strategic game between N rational players who
are situated in a causal environment. A game is a model of a situation in which
several players must take an action and afterwards they will be affected both
by the outcome of their own action as well as the actions of the other players.
In a strategic game it is assumed that no player knows the action taken by any
other players; we also assume that the causal mechanism, which represented by
a Causal Graphical Model G, remains fixed and it is unknown for each player.

In this game, players ignore the actions taken by any other player, and since
the causal model which controls the environment is unknown by every player,
then players also ignore the information that players will use in order to take
their respective actions: strategic games of this type are called Bayesian Game,
introduced in [18, 19, 20]. In the games we will consider, the uncertainty of every
player consists of two levels: on a first level, the true causal model G; on a second
level, what an action do(a) causes if a certain CGM ω is considered to be the
causal model.

We will consider the set Ω to be a family of possible causal models; in this
way, ω ∈ Ω being the true state of nature fixes a causal model which controls
the environment in which the players make their choices. In classical Bayesian
games, once ω ∈ Ω is realized as the true state, then each player receives a signal
ti = τi(ω) and the posterior belief pi(ω|τ−1i (ti)) given by pi(ω)/pi(τ

−1
i (ti)) if

ω ∈ τ−1i (ti). In the case for causal bayesian games, we must consider both the
probability pi of ω being the true state as well as the probability pωi of observing
a certain consequence when doing some action ai if ω is the true model.

Following [29], we define a new game G∗ in which its players are all of the
possible combinations (i, ti) ∈ N × Ti, where the possible actions for (i, Ti) is Ai.
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We see that fixing a player i ∈ N , the posterior probability p(ω|τ−1i (ti)) induces
a lottery over the pairs (a∗(j, τj(ω)))j , ω) for some other j ∈ N . This lottery
assigns to (a∗(j, τj(ω)))j , ω) the probability pi(ω)/pi(τ

−1
i (ti)) if ω ∈ τ−1i (ti).

The classical Bayesian game will simply call a Nash equilibrium for the game
G∗ a Nash equilibrium of the original game; but we have the second level of
uncertainty: the consequences caused by some action a through a causal model ω.
We notice that the posterior probability itself induces a probability distribution
defined over actions for each player once a desired consequence is fixed, this
distribution, according to Theorem 1 is given by pωi (c|do(a∗i ), a∗−i)pi(ω|τ

−1
i (ti)).

This motivates the following definition of a Causal Nash equilibrium.

4.3 Causal Nash Equilibrium

For each player i ∈ N in the strategic game, we define the following probability
distribution over consequences:

pai (c) = pωi (c|do(ai), a−i)pi(ω) for a ∈ A = A1 × · · · ×AN , (4)

where pωi is the probability of causing a certain consequence within a causal
model ω and pi are the player’s posterior beliefs about the causal model that
controls the environment, and do() is the well known intervention operator from
[30]. We now define:

uCi (a) =
∑
c∈C

ui(c)p
a
i (c) for a ∈ A = A1 × · · · ×AN . (5)

Notice that uCi evaluates an action profile a ∈ A in terms of: The knowledge
about the causal model of each player represented by pi, which allows each player
to evaluate the probability of causing outcomes in terms of actions by using the
do operator as well as the other actions taken by the other players, given by a−i
and the preferences of each player ui. Using this new function, we define the
equilibrium for a strategic game with causal information and Bayesian players as:

Definition 8. An an action profile a∗ ∈ A is a Nash equilibrium for this causal
strategic game if and only if:

uCi (a∗) ≥ uCi (ai, a
∗
−i) for any other ai ∈ Ai. (6)

This is, an action profile is a Nash equilibrium if and only if each player uses
her current knowledge about the causal model of the environment in order to
(causally) produce the best possible outcome given the actions taken by the other
players. The existence of the Causal Nash Equilibrium is guaranteed if every
Ai is a nonempty compact convex set in some Rn and if the preference relation
induced by uCi is continuous and quasi-concave.
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5 Conclusion

We have studied Decision Making under uncertainty in the case where a Causal
Graphical Model is responsible for producing an outcome given an action
(intervention) of the decision maker. We have provided a rational decision making
criterion for the case in which the decision maker does not know the causal model,
but has probabilistic beliefs about possible models.

Using our decision making result, and taking as a basis Harsanyi’s model of a
Bayesian Game in which every player has incomplete information about both
the actions taken by other players as well as the information that made each
player take his action we have been able to provide a definition of a Causal Nash
Equilibrium in which every player is aware that there exists a Causal Mechanism
that will produce some consequence once he takes an action.

Our decision making result (i.e., Theorem 1), besides motivating the Causal
Nash Equilibrium, also provides an optimality criterion for learning algorithms
in causal settings such as those presented in [26, 34, 13]. Our definition of Causal
Equilibrium takes into account classical game theory through the incorporation of
the classical von Neumann-Morgenstern utility function as well as the fundamental
notion in Causation of Pearl’s do operator.

We hope this works contributes to recent efforts of giving Causation its well
deserved place in Artificial Intelligence as well as motivating further research in
computational aspects of Causal Decision Theory.
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Abstract. Causal estimation is possible through the use of Bayesian 

Networks; an alternative is to use an intervention operator originally 

proposed by Pearl. This operator acts by manipulating a variable that is a 

candidate cause of another, eliminating from this potential cause any 

influence from other variables. This tool promises to be a powerful method 

for estimating causality; however, as far as we know, it does not have a 

validation that allows us to know its scope and limitations. This work 

presents the implementation of the intervention operator and its evaluation in 

different databases. This last one tries to measure the performance of the 

efficiency to determine causal routes using for it the estimation of the Causal 

Effects and the Bayes Factor. Our results allow us to identify operator 

improvements to be used in a general causal estimation scheme and not only 

in Bayesian Networks that meet certain characteristics. 

Keywords: Bayesian networks, causality, intervention. 

1 Introduction  

The study of causality has its origins approximately 300 years ago with the works 

of Hume and Kant, who tried to explain how it is that causal knowledge is acquired 

naturally. This gave rise to various investigations that throughout history have tried 

to understand and replicate causality. Artificial Intelligence (AI) is an area 

interested, among other things, in the study of mental processes including causal 

learning. Intuitively, a causal relationship occurs when X causes Y. However, we 

cannot always identify such relationships, as they may be spurious or contain 

confounding factors that may be imperceptible to observations. Pearl argues that the 

best way to reproduce the causal inference is through the computer by first 

understanding the logic of causal thinking [1]. 

Pearl represents the natural causal process through a graphical representation 

called "the ladder of causation", that explains how the natural causal process is 

carried out and how it could be mapped artificially [1]. Below are described the 

ladder of causation levels: 
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 Level 1. Represents the identification of causal relationships (seen 

or observed). 

 Level 2. Refers to the interventions and predictions of the effects of the 

deliberate intervention of the environment. 

 Level 3. Is the ability to choose from the alterations that produce the 

best results. 

The works of Judea Pearl propose an intervention operator for the study of causal 

relationships located on the second level. He introduced an intervention of variables 

to a Bayesian Network through an operator called “do or set”, with which a new 

probability resulting from the intervention of variables, is obtained [2]. 

There are currently no reports of work in which the functioning of the operator 

can be appreciated in real cases; in this evaluation proposal we try to find the ideal 

conditions under which the operator works, we evaluate how through the 

intervention it is possible to access a set of new probabilities that allow to express 

themselves in causal terms. In this work, we made use of a set of databases provided 

by experts in different areas; one inclusion criterion for these was the existence of 

causal relationships between some of their variables. 

The results found as interventions were encouraging in terms of obtaining causal 

probabilities; however, they raised the imminent need to create a model that learns 

causal relationships, supporting the expert in creating Causal Bayesian 

Networks automatically. 

2  Theoretical Framework 

2.1  Causal Bayesian Networks 

Bayesian Networks (BN) were developed and introduced by Judea Pearl in the early 

1980s to facilitate the prediction and abduction of intelligent AI systems [7]. BN's 

are models that combine graph theory and Bayesian probability. They are 

represented by Directed Acyclic Graphs (DAG) that allow us to know the structure 

of the variables hierarchically, identifying parents and children in their structure and 

the existing relationship between them. The structure of a network provides 

information on the probabilistic dependence of variables or the conditional 

independence of one variable given to another (or set of them) [8]. The force of 

influence between the connections of a network is contained in the conditional 

probabilities and is represented by each node given the set of its parents. The joint 

probability of a BN can be obtained using equation 1: 

𝑃(𝑥1,  … , 𝑥𝑛) =  ∏ 𝑃(𝑥𝑗|𝑝𝑎𝑗)

𝑗

, (1) 

where 𝑝𝑎𝑗 represents the parents of node 𝑥𝑗 in the BN.  

As of the structure of a BN, it is possible to carry out association consultations 

(Bayesian inference), which are supported by the criterion of d-separation to verify 
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the conditional independence in the connections. This paper will not address details 

about BNs, such as the d-separation criterion and Markovian parents. If you are 

interested in consulting these issues, a more detailed review is given in [3]. 

A Causal Bayesian Network (CBN) can be understood as a BN, with the property 

that the parents of each node represent a direct cause of it. From equation (1), we 

can assume that the parents of the variable 𝑋𝑗, are its direct causes. Otherwise, if 

there are no parents, the marginal probability 𝑃(𝑋𝑗) must be used. 

Definition 1. Causal Bayesian Network [3] 

Let 𝑃(𝑣) be a probability distribution on a set 𝑉 of variables, and let 𝑃𝑥(𝑣) denote 

the distribution resulting from the intervention 𝑑𝑜(𝑋 =  𝑥) that sets a subset 𝑋 of 

variables to constants 𝑥. Denote by 𝑃∗ the set of all interventional distributions 

𝑃𝑥(𝑣), 𝑋 ⊆ 𝑉, including 𝑃(𝑣), which represents no intervention (i.e., 𝑋 =  0). A 

DAG G is said to be a causal Bayesian network compatible with 𝑃∗ if and only if the 

following three conditions hold for every 𝑃𝑥  ∈  𝑃∗: 

1. The probability distribution 𝑃𝑥 is Markov relative with the DAG G [6]. 

2. The probability of all the variables that are part of an intervention is equal 

to 1 for the value established in: 𝑃𝑥(𝑣𝑖)  =  1 for all 𝑉𝑖 ∈ 𝑋 provided that 

𝑉𝑖 = 𝑣𝑖 is consistent with 𝑋 = 𝑥 [6]. 

3. The probability of all the remaining variables that are not established in 

the intervention is equal to the original probability (the variable given by 

their parents). 𝑃𝑥(𝑣𝑖|𝑝𝑎𝑖)  =  𝑃 (𝑣𝑖│𝑝𝑎𝑖) for all 𝑉𝑖 ∉  𝑋 provided that 𝑝𝑎𝑖  

is consistent with 𝑋 =  𝑥 [6]. 

From Definition 1, the truncated factorization 𝑃𝑥(𝑣) can be calculated for any 

intervention 𝑑𝑜(𝑋 =  𝑥). Formally remaining as the equation (2): 

𝑃𝑥(𝑣) = ∏
 

{ 𝑖|𝑉𝑖 ∉ 𝑋}   𝑃(𝑣𝑖|𝑝𝑎𝑖), (2) 

for everything 𝑣 consistent with 𝑥. 

According to Pearl, the construction of causal DAG has several advantages. First, 

the judgments required for the construction of the models are more significant and 

accessible. In addition, the causal models indicate how these probabilities would 

change when performing external interventions [3]. The formal construction of 

these models is based on the assumption that parent-child relationships represent 

autonomous mechanisms, so it is possible to make changes in those relationships 

without changing or affecting the other existing relationships within the network.  

The 𝑑𝑜(𝑥) operator simulates physical interventions in the network, eliminating 

some functions of the model and replacing it with constants 𝑋 =  𝑥 while keeping 

the rest of the model unchanged. Due to the assumption of autonomy, the 

manipulated distribution of the intervened variable is independent of the rest of the 

network, so a pruning process can be applied, which implies the elimination of all 

the arcs (parents) received by the intervening variable [4]. 
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The difference between observing and intervening is deduced from the last 

statement. For example, if we wanted to observe the effect of 𝐵 =  𝑏0  for a model 

of BN 𝑃 (𝑎, 𝑏, 𝑐)  =  𝑃 (𝑎) 𝑃 (𝑏 | 𝑎) 𝑃 (𝑐 | 𝑏), the probability would be obtained 

from of 𝑃 (𝐴, 𝐶 | 𝐵 =  𝑏0). However, by applying the assumptions of autonomy 

and pruning, the connection between variables B and C are eliminated, obtaining: 

𝑃(𝑎, 𝑑𝑜(𝑏), 𝑐) =  𝑃(𝑎)𝑃(𝑐|𝑑𝑜(𝑏) = 𝑏0). (3) 

From the new probability expression, it is possible to calculate the influence of 

the intervened variables on their effects. The inference rules necessary for the 

calculation of causal probability expressions may be consulted in detail in [6]. 

Whenever a feasible reduction is detected for 𝑃(𝑦|�̂�)the effect of 𝑋 on 𝑌 is said 

to be identifiable. 

Definition 2.8 Identificability [2] 

The causal effect of X on Y is said  to be identifiable is the quantity 𝑃(𝑦|�̂�) can be 

computed uniquely from the joint distribution of the observed variables. 

Identifiability means that 𝑃(𝑦|�̂�) can be estimated consistently from an arbitrarily 

large sample randomly draw from the joint distribution.  

Then, the causal effect of a variable 𝑋 on another variable 𝑌 is: 

Definition 2.9 Causal Effects [3] 

Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted 

either as 𝑃(𝑦|�̂�) or as 𝑃(𝑦|𝑑𝑜(𝑥)), is a function from X to the space of probability 

distributions on Y. For each realization x of X, 𝑃(𝑦|�̂�) gives the probability of Y = 

y induced by deleting from the model of (3) all equations corresponding to variables 

in X and substituting X = x in the remaining equations. 

Finally, the calculation of the causal effect (or average causal effect) that one 

variable has on another, can be calculated from equation (4): 

𝐸𝐶 =  𝑃(𝑌 =  𝑦|𝑑𝑜(�̂�)) −  𝑃(𝑌 =  𝑦|𝑑𝑜(�̂�′)),  (4) 

where: 

𝑌 =  𝑦 is a specific value of the effect.  

�̂� is a specific value of the intervened variable.  

�̂�’ is another value of the intervened variable for the same value of 𝑦. 

This last equation is the one that allows extracting the real estimation of the 

intervention of variables in the network, marking the difference with the simple 

observation. 
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3 Materials and Methods 

3.1 Materials 

The selection of the experimental units was made up of a set of "causal" databases. 

According to the expert opinions, these contained causal relationships in some of 

the variables. 

We used a total of 5 datasets. The first called Ecological Integrity is a database 

of 23 variables (22 quantitative and one qualitative) with 290,687 cases; 4 variables 

as possible causes and 4 effects. This dataset contains information on ecological 

integrity in Mexico. Two other sets contain data related to Breast Cancer. One is a 

prospective sample and the other a retrospective sample, 3 variables were 

considered as possible causes and one as an effect of each of them. These databases 

contain 12 variables (11 quantitative and one qualitative) with 322 and 692 

cases respectively. 

Another dataset contained information on Gene Expression Levels, with a total 

of 12 quantitative variables (3 causes and one effect) and 31 cases. Finally, the 

Synthetic-data-BayesiaLab database was obtained from the BayesiaLab software to 

validate the results of this implementation. The database has 3 variables (one cause 

and one effect) and a total of 1000 cases. Causes and effects were determined by 

the experts who provided the data. Each variable was an experimental unit and the 

total was 34, in each run one value the variable intervened was fixed. 

3.2 Methods 

The pre-processing strategy started discretizing the quantitative variables in the 

datasets; for this we used Weka software, and the used methods were: Discretize 

and CAIM. The implementation was carried out in R, the algorithms and metrics 

used to BN’s construction were Hill-Climbing with the BIC, and K2 metrics using 

the maximum likelihood estimator; the programing language used to implement the 

causal routes search and the new probabilities estimation is R.  

To carry out the validation of the results, the causal effects were obtained by 

equation 4, and additionally, calculated the Bayes factor was used. The Bayes Factor 

(BF) is the relationship between the probability of one hypothesis and another. It 

can be interpreted as a measure of force in favor of a hypothesis (model) of two 

competing hypotheses and is denoted by equation 5 [5]: 

𝐵𝐹 =
𝑃(𝐷|𝐻1)

𝑃(𝐷|𝐻0)
. (5) 

The BF can take any positive value, and a way of interpreting it is given by what 

is indicated in Table 1. 
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4  Methodology 

A single treatment was designed for the experiment and applied to all experimental 

units. The treatment has only one level and consists of the intervention of a variable 

in the network, fixing for each run a specific value (do(x)) of the variable 

intervened. 

Each experimental run was carried out in three stages. The first consisted of the 

construction of the BR; the second the search for the possible causal route and the 

third, the estimation of the causal probability. 

Phase 1. (Construction and validation of BN’s) 

A BN is built from the data set using the bnlearn R library.  

Once the BN has been obtained, and before the intervention, the causal 

relationships are validated by the expert. 

If the relationships in the network do not reflect a causal match with the expert's 

knowledge, the parameters with which the BN is constructed can adjust - such as 

the metric - or indicate the permitted or restricted causal relationships that must be 

respected in this one. 

Phase 2. (Search for Causal Routes) 

From the BN’s validated in Phase 2, the cause variable and the value to be 

intervened must be indicated, as well as the effect variable. 

With the support of the causal.effect library, the search for the Causal Route (CR) 

in the BN is carried out. 

If there is a CR, the system delivers the new probability equation, which shows 

the causal probabilities must be calculated. An example of the form of the equation 

is presented below: 

“𝑠𝑢𝑚
{𝑥𝑖,𝑥𝑗}𝑃(𝑦|𝑥𝑘 , 𝑥𝑖 , 𝑥𝑗)𝑃(𝑥𝑗 |𝑥𝑘)𝑃(𝑥𝑖 |𝑥𝑘)

”, (6) 

Table 1. Interpretation of BF. 

Bayes Factor Interpretation 

>100 Extreme evidence for H1 

30-100 Very strong evidence for H1 

10-30 Strong evidence for H1 

3-10 Moderate evidence for H1 

1-3 Anecdotal evidence for H1 

1 No evidence 

1-0.33 Anecdotal evidence for H0 

0.33 – 0.1 Moderate evidence H0 

0.1 – 0.03 Strong evidence for H0 

0.03 – 0.01 Very strong evidence for H0 

<0.01 Extreme evidence for H0 
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where 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘  denote CBN variables, which are not the effects. The effect is 

represented by the variable 𝑦. 

Phase 3. (Calculation of causal probabilities) 

To calculate the causal probability tables, the expression is broken down of 

equation 3, separating the conditional probabilities and the sum about which the 

calculation will run. 

Calculate - from the data - the conditional probability tables for each element of 

the causal expression (equation 3). Carry out the normalization of each table, 

calculate the causal probabilities. 

Once the probability tables are obtained, calculate the Causal Effects and Bayes 

Factor to find potential causes. 

Finally, the probability values are compared before and after the intervention, the 

library "querygrain" make queries in the BN using probability propagation. 

5        Results 

Once the BN’s were obtained, the search for possible causal routes was carried out. 

Figure 1 shows the BN (left) and CBN (right) for the Ecological Integrity base; the 

pink nodes shown in the CBN represent the set of variables that are part of the 

Causal Route, and that were used to obtain the causal probabilities. The variable 

used for this example was Landscape Transformation (landtrnas), and the variable 

on which its effect was calculated was Ecological Integrity (eiclas). 

The new expression of probability resulting from the intervention, obtained 

through the inference rules, is presented below: 

“sum{divfun, resistenci}P(eiclas|cropland, rangeland, irrigation, land-

trans, divfun, resistenci)P(resistenci|cropland, rangeland, irrigation, 

landtrans, divfun)P(divfun|cropland, rangeland, irrigation, landtrans)”  

  (7) 

The causal probabilities were calculated from equation 6. This exercise allows 

us to appreciate the differences between intervention and observation. Table 2 

shows the results of the intervention to a cause variable (do(landtrans = (0,2 − 0,4))) 

and the observation, this last one calculated through the propagation of probabilities 

in the BN.  

From the results of Table 2, it may be thought, that the intervened variable, is a 

potential cause of the effect. However, this cannot be proven until calculating the 

Causal Effects (CE) and the Bayes Factor (BF). 

All datasets were analyzed in the same way, from the generation of BN's to the 

obtaining of the CE and BF. Table 3 shows the results of the search of these routes, 

illustrating the low percentage of possible variables to intervene, from networks 

created with traditional AI algorithms. 
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It is important to mention that in the first experimental version (the one presented 

in this document), BN was not considered to be carried out manually, that is, only 

with the knowledge of the experts. In a second attempt, the networks were modified, 

which considerably increased the number of intervened variables, and causal 

routes found. 

From the new expressions of probability, resulting from the intervention of 

variables in the BN's, it is possible to estimate the new probabilities that we call 

causal. This was shown in the previous example (Table 2). Subsequently, the BF 

and the CE were calculated. To obtain them, it was necessary to calculate the causal 

probability for two different values of the cause and the same value of the effect. 

Table 4 presents the results of some of these values. The column called effect 

shows the name of the variables for this purpose and the value for which their causal 

  

Fig. 1. Bayesian Networks (left) Causal Bayesian Network (right). 

Table 2. Observed and causal probabilities for the cause variable landtrans = (0.2 - 0.4) and 

the eiclass effect. 

Effect = eiclas   Probability BN Probability CBN 

High 0.04 0.02 

Low 0.10 0.06 

Medium 0.07 0.03 

Transformed 0.79 0.89 

Table 3. Proven databases for intervention and causal routes found in each. 

Datasets Effects Cause 
Total 

experiments 
CR - found 

Ecological integrity 4 6 24 4 

Breast cancer - prospective 1 3 3 1 

Breast cancer - retrospective 1 3 3 1 

Genetic expression levels 1 3 3 1 

Synthetic data BayesiaLab 1 1 1 1 
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probability was calculated. The column called interventions shows two values of 

the cause in which the causal probabilities were compared; columns BF and CE 

show the results of the calculation of these tests. 

The BF can be used as a hypothesis test to contrast two models, making a 

comparison of this test with the CEs allowed testing the operator's consistencies in 

estimating causal probabilities and their interpretation of these as potential causes. 

According to the interpretation corresponding to the BF this is consistent with the 

CE, the values between 1 and 100 obtained with the BF must correspond to positive 

values of the CE, and that supports the evidence of potential causes for the inter-

vened values found in the numerator of the BF or to the left of the CE. 

6        Conclusions and Future Work 

The variables intervention through the operator proved to be a good method of 

causal estimation if the conditions for the intervention are favorable. The tests 

carried out after the implementation meant that its effectiveness on estimating the 

causal probability could be confirmed. 

This work not only explores the complex issue of causality but also provides an 

understanding of how to observe relationships, makes estimates based on 

observations and interprets them; it should not be a difficult task. However, finding 

the set of appropriate variables that could be probable causes, and carrying out 

interventions that provide information on the causal force of one value over another, 

does have a higher degree of difficulty. This is because estimating causality 

adequately requires much expert knowledge, and intuition, which cannot be 

reflected in the calculation of the causal probabilities. 

Table 4. Bayes Factor and Causal Effects results for intervention. 

Datasets Effect Cause Interventions BF CE 

Ecological integrity 
Eiclas 

high 
landtrans 

(-inf-0.2] 

(0.2-0.4] 

 

25.00 0.47 

Breast cancer -

prospective 

Outcome 

Malignant 
Size 

Present 

Absent 

 

0.33 
-

0.37 

Breast cancer -

retrospective 

Outcome 

Malignant 
Nuclear.Size 

Present 

Absent 

 

7.91 0.72 

Genetic expression 

levels 

APOE 

(319.22 - 

387.64) 

BACE1 

(166.94 - 

221.33) 

(221.33 - 

493.43) 

 

3.4 0.40 

Synthetic data 

BayesiaLab 

Outcome 

Patient 

Recovered 

Treatment 
Yes 

No 
1.12 0.08 
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Once it has been proven that it is possible to estimate the probability of the 

intervention, it becomes interesting to find a way to connect the first level of the 

ladder of causation with the second. To do this, it will be necessary to turn towards 

the areas that study the process in which the learning of the causal relations occurs 

naturally and look at these algorithms that allow the creation of a CBN that 

resembles causal learning, with the same precision that is achieved naturally. This 

will provide artificial entities with mechanisms that learn approximate causality to 

the same level of a human being. 
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y avanzados, pp. 77–100 (2006). 

 

 

 

 

 

 

 

 

 

144

Jenny B. Vázquez Aguirre, Nicandro Cruz Ramírez

Research in Computing Science 149(3), 2020 ISSN 1870-4069



 

 

 

 

 

 

 

 

 

 

 

Regular Papers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

An Open-Source Lemmatizer for Russian Language 

based on Tree Regression Models 

Iskander Akhmetov1,2, Alexander Krassovitsky1, Irina Ualiyeva1, 

Alexander Gelbukh3, Rustam Mussabayev1 

1 Institute of Information and Computational Technologies, Almaty, 

Kazakhstan 

2 Kazakh-British Technical University, Almaty, 

Kazakhstan 

3 Instituto Politécnico Nacional, CIC, Mexico City, 

Mexico 

i.akhmetov@ipic.kz, www.gelbukh.com 

Abstract. In this article, we consider the problem of supervised morphological 

analysis using an approach that differs from industry spread analogs. The article 

describes a new method of lemmatization based on the algorithms of machine 

learning, in particular, on the algorithms of regression analysis, trained on the 

open grammatical dictionary of Russian language. Comparison of obtained 

results was performed with existing alternative applications that are used 

nowadays for addressing lemmatization problems in NLP problems for Russian 

language. The proposed method shows some potential for further development 

as it has comparable quality but uses relatively simple machine learning 

algorithm and at the same time is not rule based involving no manual work. The 

source code for our lemmatizer is publicly available. 

Keywords: lemmatization, text normalization, supervised machine learning, 

decision tree regression models. 

1 Introduction 

A common problem in the analysis of texts is a large feature space that corresponds to 

the dictionary used in text vectorizers (90–200 thousand attribute entities). A common 

approach to reduce vector space is to normalize texts. It shows considerable success in 

reducing vector space in cases when a relatively small amount of text available in 

datasets leads to more balanced and accurate models. In addition to dimensionality 

reduction of Vector Models it also reduces the size of the index, which speeds up all 

text processing operations. 

Normalization, namely, word lemmatization is a one of the main text preprocessing 

steps needed in many downstream NLP tasks. The lemmatization is a process for 
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assigning a lemma for every word form. A lemma is the canonical (normal, dictionary) 

form of the lexeme. For instance, in Russian language, the normal form of a noun 

corresponds to the form in the nominative case in the singular (for example, “сестры” 

sestry ‘sisters’ → “сестра” sestra ‘sister’), for adjectives, the normal form will 

correspond to the nominative case, masculine, singular (“сильными” sil'nymi ‘by 

strong’) → “сильный” sil'nyj ‘strong’), verbs have the normal form corresponding to 

the infinitive (“бегут” begut ‘they run’) → “бежать” bezhat' ‘to run’) [1]. A number 

of approaches exists for lemmatization [2–4], employing specific language 

morphological rules hardcoding (rule based approach), simple dictionary methods, and 

up to the contemporary deep learning methods.  

Morphologically rich languages are difficult to implement lemmatization, because 

in addition to ambiguous morphology exception rules the semantics of words is highly 

dependent on the attached prefixes, affixes and suffixes. Our machine learning task is 

complicated by that fact that Russian language is influenced by a number of essential 

attributes related to the internal complexity of this natural language [5].  

Two popular morphological analyzers for the Russian language are the 

pymorphy2 [6] and MyStem [7], the comparison with which is carried out in this article.  

MyStem is a tool for morphological data acquisition for Russian languages, pymorphy2 

is a morphological analyzer for Russian and Ukrainian languages. Both of them are 

freely available for non-commercial and limited commercial use. MyStem is based on 

a dictionary, automatically converted to trie a structure.1 Pymorphy2 is based on 

OpenCorpora dictionaries [8]. Both of them are based on manually elaborated set of 

heuristic rules, and on corpus statistics to eliminate extra morphological variants and 

obtain morphology of a wide lexical coverage. 

In our work, the lemmatization is treated by building tree regression models [9], i.e., 

by supervised automatic learning with decision trees that are constructed corresponding 

to language grammatical features. A number of regression models have been compared 

by training on a well-built dictionary. Our method is a direct supervised approach of 

building word lemma regressor. In principle, this approach may be applied to any 

language, that captures the property of high variability inside its syntactic forms. Our 

approach estimates the possibility of computing syntactic models using only datasets 

in the form of wordform–lemma dictionaries.  

This paper presents a comparative analysis of the lemmatization with Pymorphy2, 

MyStem and a publicly available implementation2 of the method presented in this 

paper. For testing purposes lemma data set from is obtained by parser of ABBYY 

Compreno [10]. The ABBYY tool is taken as a gold standard of comparison approach, 

because nowadays is considered as state of art for the industrial techs. The dataset 

contains 225 publications taken from the Kazakhstan news portal tengrinews.kz marked 

by this parser. Our lemmatization procedure can be used in various scenarios; however, 

it is currently considered useful mainly as a preprocessing of Russian-language media 

                                                           
1  A trie is a prefix tree and a special data structure used in information retrieval (IR) tasks [14].  
2  A working demo of our lemmatizer can be found at http://isa1.pythonanywhere.com/, and the 

source code is available on GitHub at https://github.com/iskander-akhmetov/Lemmatization-

of-Russian-Language-by-Tree-Regression-Models/. 
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texts. The motivation to develop this lemmatizer is because the same entities of Russian 

language used in the media of some countries, such as Kazakhstan, are partially 

different from the entities of Russian language used in the media of Russian Federation. 

2 Data and Methods 

2.1 Dataset 

For training models, the open grammatical dictionary of Russian language 

(ODICT) [11] was used, consisting of more than two million word forms and their 

lemmas. Examples of the dictionary entries are shown in Table 1. 

Table 1. ODICT example entries. 

Word Lemma 

елям (yelyam ‘to pine trees’)  ель (yel’ ‘pine tree’, noun) 

требовали (trebovali ‘they required) требовать (trebovat’ ‘to require, verb)  

фактических (fakticheskih ‘of factual’, 

plural) 

фактический (fakticheskiy ‘factual’, 

adjective) 

 

To test the method, the corpus of the Kazakhstan news portal tengrinews.kz was taken, 

including 225 publications (20621 words). All publications were parsed via the 

ABBYY parser. To test for accuracy of the regression models open-corpora dataset [8] 

was used. 

2.2 Method 

Vectorization of words is performed character-by-character into a vector of fixed length 

30 (feature space) and values as an order of a letter in the Russian alphabet with 

following zeros. After vectorization of various word forms and their initial forms 

obtained from the open dictionary, two arrays of vectors were obtained, which were 

randomly divided into training and test samples in a ratio 67 to 33. The resulting arrays 

were fitted into corresponding regression models. The following regression models 

were used: Decision Tree, Random Forest, Extra Tree, and Bagging from sklearn 

Python library [12]. 

We use tree-based methods for regression. These involve stratifying or segmenting 

the predictor space into a number of simple regions. We divide the predictor space—

that is, the set of possible values for 𝑋1, … , 𝑋𝑝—into 𝐽 distinct and non-overlapping 

regions, 𝑅1, … , 𝑅𝐽. For every observation that falls into the region 𝑅𝑗, we make the same 

prediction, which is simply the mean of the response values for the training 

observations in 𝑅𝑗. The goal is to find boxes 𝑅1, … , 𝑅𝐽 that minimize the RSS, given by 

∑∑(𝑦𝑖 − �̂�𝑅𝑗)
2

𝑖∈𝑅𝑗

𝐽

𝑗=1

, 
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where �̂�𝑅𝑗is the mean response for the training observations within the 𝑗-th box. 

Bagging, random forests, and boosting use trees as building blocks to construct more 

powerful prediction models. Each of these approaches involves producing multiple 

trees, which are then combined to yield a single consensus prediction. 

3 Evaluation 

We compared four variants of our regressor lemmatizers with the Pymorphy2 and 

MyStem. The performance of the lemmatizers was evaluated using the accuracy metric, 

roughly, the proportion of correct answers given by a lemmatizer. Table 2 presents the 

results for all regressor lemmatizers for four testing sets.  

Table 2. Accuracy of regressor lemmatizers and available alternatives. 

Regressor 

tagger 

Cross- 

validation  

(5 folds,  

2,337,988 

words) 

Train / Test split 

67% / 33% 

(23,37,988 

words) 

ABBYY  

corpus check  

(20,621 words) 

Open- 

Corpora 

check  

(347,409 

words) Train Test 

Pymorphy – – – 0.8181 0.8967 

MyStem – – – 0.7250 0.8208 

DecisionTree 0.3466 0.7296 0.6788 0.7561 0.7088 

RandomForest 0.5991 0.8035 0.7562 0.3623 0.3556 

ExtraTrees 0.6697 0.8759 0.8096 0.7544 0.6840 

BaggingRegressor 0.6006 0.8045 0.7571 0.3682 0.3569 

 

As it can be seen from Table 2, Extra Tree achieves 88% / 81%, Random Forest 

Regressor achieves 80% / 76%, Decision Tree Regressor 73% / 68% and Bagging 

Regressor, 80% / 76% on the train / test accuracy scoring. Experiments with variations 

on hyper parameters of the computation algorithms have shown that their optimization 

(i.e., a search for optimal values of tree depth and maximal splitting size) does not give 

essential improvement. 

The cross validation showed descent result for the Decision tree algorithm and low 

results for the rest of the algorithms tested, but on train/test examination the results 

improved significantly. The rationalization behind this can be that cross validation 

performed on large datasets leaves testing on relatively large amount of unseen data 

performed several times (5 times in our case for the number of folds used) and if it 

happens to randomly select a difficult test set even for one time it can spoil the average 

significantly. 

After comparing the results the models showed on ABBYY and OpenCorpora 

datasets, we saw that Decision Tree algorithm showed comparable results to ExtraTrees 

algorithm, but the obtained models differ 10 times in size: 450 MB for Decision Tree 

and 4.5 GB for ExtraTrees. Therefore, it was decided to use Decision Tree model for 

its relative simplicity and smaller size. 
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The reason for failure of RandomForest and Bagging Regressors on ABBYY and 

OpenCorpora tests is open question, but can be due to the difficulties of these 

algorithms with outliers and thus low robustness. Nevertheless, both of the failed 

algorithms are relatively hard to interpret and we leave it for further discussion and 

upcoming research. 

Each feature receives weights according to its contribution to computed lemma. See 

Fig. 1, where the axes X and Y mean feature (letter position number in a word) and the 

computed weight, correspondingly. 

 

Fig. 1. The weights for features distribution (feature importance) reflect Russian word 

morphology (prefix, root, suffixes, etc.) are shown for Random Forest (dotted line) and Decision 

Tree (continuous line) regression models. 

As can be seen from the figure, the model attributes more weight and thus account 

for importance of the beginning and especially the middle of the word - in Russian 

language it is usually the stem part [15]. Low significance of the letters in the positions 

10 through 30 can be explained by the fact that the average word length in Russian is 

10 letters and words of length more than 15 symbols are very rare. 

Table 3. Comparison with alternative lemmatizers. 

Lemmatizer 
ABBYY corpus check  

(20621 words) 

OpenCorpora check  

(347409 words) 

Decision Tree Lemmatizer 0.7561 0.7088 

Pymorphy2 0.8181 0.8967 

MyStem 0.7250 0.8208 

 

Despite the act that the proposed algorithm was less accurate than Pymorphy2 on 

ABBYY test and was left behind on the OpenCorpora test by both Pymorphy2 and 

MyStem, it is based on a relatively simple machine learning technique and ancient 

algorithm involving not much computational resources and still eliminates lots of 

manual rule hardcoding workload. 

151

An Open-Source Lemmatizer for Russian Language based on Tree Regression Models

Research in Computing Science 149(3), 2020ISSN 1870-4069



 

3.1 Error Analysis 

In order to evaluate the performance of the method, the authors’ lemmatizer was 

compared with the MyStem and Pymorphy2 lemmatizers, using the ABBYY parser to 

provide the testing data set. The number of wrongly lemmatized words is compared and 

shown by Venn diagram for these three lemmatizers by using the ABBYY test dataset; 

see Fig. 2.  

 

Fig. 2. The total number of errors and number of mutual errors in the testing dataset (20621 

words) for our Developed lemmatizer (Decision Tree Regressor), MyStem and pymorphy2 are 

shown. 

All three lemmatizers share 2,606 errors. The largest number of errors peculiar only 

to special lemmatizer belongs to MyStem (1,834 errors), which is followed by the 

Developed lemmatizer based on the Decision Tree algorithm (1,495 errors) and 

Pymorphy2 has mere 225 unique errors. 

4 Conclusions 

Decision tree regressors is not a silver bullet in machine learning, yet it can be a good 

tool in modelling language models in cases when it is too complicated to compose 

thousands of different rules manually.  Our approaches estimate the possibility of 

computing syntactic models using datasets in the form of wordform–lemma 

dictionaries.  

Number of experiments shown the developed new lemmatizer is able to solve the 

problem of lemmatization (especially for specific text topics), although it needs further 

training. Experiments can be continued for the corpus with a large number of 

publications and with the study of the speed of the algorithms. 
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