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Abstract. This work proposes Differential Evolution (DE) to train pa-
rameters of Bayesian Networks (BN) for optimizing the Conditional
Log-Likelihood (Discriminative Learning) instead of the log-likelihood
(Generative Learning). Although Discriminative Parameter Learning al-
gorithms have been proposed, to the best of the authors’ knowledge, a
metaheuristic approach has not been devised yet. Thus, the objective
of this research is to come up with this kind of solution and evaluate
its behavior so that its feasibility in this domain can be determined.
According to the theory such a solution tends to generate low-bias classi-
fiers that minimize classification error but this is not reflected in results,
regarding proposed method, bias in search for best solutions improves
DEs performance.

Keywords: Bayesian networks, differential evolution, discriminative pa-
rameter learning.

1 Introduction

Two paradigms are distinguished for parameter learning of Bayesian networks.
One of them, called Generative Learning (GL), optimizes Log-Likelihood in order
to obtain the parameters that characterize the joint distribution in the form
of local conditional distributions, and subsequently estimates class conditional
probabilities using the Bayes rule. Even though this paradigm is computationally
efficient, it is likely to generate biased classifiers [12].

The other paradigm optimizes Conditional Log-Likelihood (CLL) to directly
estimate the parameters associated with conditional class distribution. Such
paradigm is known as Discriminative Learning (DL) and generates low-bias
classifiers that typically tend to minimize the classification error. In addition, the
effect caused by the assumption of conditional independence among attributes
in the network structure, but which may be violated in the data, is reduced.
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However, the huge search space defined by the parameters that optimize the
CLL function motivates this work to find efficient and effective search algorithms
for discriminative parameter learning in BN classifiers [1,9].

Based on the above, different algorithms have been developed with the pur-
pose of generating unbiased classifiers that mitigate the assumption of condi-
tional independence among attributes. To the best of the authors’ knowledge,
there are nor proposals that apply evolutionary algorithms for DL of parameters.
In this paper, we propose the use of the Differential Evolution (DE) algorithm
for learning parameters in BN optimizing CLL. The aim is to understand the
behavior of this evolutionary algorithm in this particular optimization task in
both optimized structures for classification purposes, learned with a Bi-Objective
PSO [2] and structures that are not optimized, learned by Tree-Augmented
Network [3]. A comparison is made against some parameter learning algorithms
for Log-Likelihood optimization.

The rest of the paper is organized as follows. Section 2 describes the opti-
mization problem and introduces notations and terminologies. Section 3 gives
details about the implementation of algorithms and experimental settings. The
obtained results are presented in section 4. Finally, some conclusions and possible
paths of future work are given in section 5.

2 Parameter Learning

GL is based on two steps, the first involves the maximization of P (y,x), where y
is the class and x is the set of attributes; and the second step is the application
of the Bayes rule to obtain P (y|x). In DL, it is possible to directly optimize
P (y|x), maximizing CLL.

Although there are approaches for parameter learning (not structures) with
a discriminative approach [4]-[12], no meta-heuristic algorithms for DL of pa-
rameters in BNs have been adopted. A related work was proposed by [13], where
they optimize LL (Generative approach) with a Genetic Algorithm combined
with Expectation Maximization (GAEM). This proposal, according to the au-
thors, combines the global search and local search properties of the respective
algorithms. Part of notation and definitions used throughout this paper are taken
from that work.

The proposed methods in this paper is based on Differential Evolution, which
has been used for optimization problems in real-world applications[14]. DE was
introduced in 1996 [15], and improved with some mechanisms to decrease the
dependence to its parameter values such as the mutation factor F and the
crossover rate CR [14], so as to increase its search performance[16].

To determine which search strategies provide a better performance, four DE
variants will be used in this study: DE/rand/1/bin [15], JADE without archive,
JADE with archive [14] and L-SHADE [16]. Such variant selection was made to
include the most popular DE variant (DE/rand/1/bin), a variant with a novel
differential mutation operator (JADE) and a recent one with a memory-based
parameter adaptation mechanism (L-SHADE).
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Let X = {X1, X2, . . . , XR} denote the set of random variables in a BN. Each
random variable Xk is associated with a Conditional Probability Table (CPT).
An individual ρt consists of a random variables vector of CPTs in a BN. The
estimated CPT of an individual i at generation t is denoted by Θt

i . An individual
is defined as a vector consisting of CPTs: ρti = (Θt

1, Θ
t
2, . . . , Θ

t
R).

A CPT is generated based on the constraint that the sum of probabilities
for different states of the random variable should be equal to 1 for a parent
instantiation. A CPT is given by: Θt

i = (θt1,1, . . . , θ
t
1,b, . . . , θ

t
a,1, . . . , θ

t
a,b), where

θtab ∈ [0, 1] denotes a probability value for a particular state given a parent
instantiation.

3 Implementation

The obtained performance by the DE variants was compared based on both
CLL optimization and predictive accuracy. Such results were further contrasted
against those obtained by three GL algorithms: (1) Bayesian estimation, (2)
maximum-likelihood and (3) Attribute-Weighted Naive Bayes. The parameter
learning was applied to (1) BN structures optimized for classification with a
bi-objective PSO algorithm that seeks trade-offs between predictive power and
compression of data with the MDL metric [2]; the solution found in the “knee”
of the Pareto front was selected as the best BN structure, and (2) BN structures
learned with TAN-CL[1]. The datasets shown in Table 1 were used for com-
parison purposes and predictive accuracy was tested with 15 rounds of 2-fold
stratified cross validation. 2-fold cross validation is used in order to maximize
the variation in the training data from trial to trial [12].

Table 1. Details of datasets. Abrev: Abbreviation. Class = Number of classes. Att:
Number of attributes. Case: Number of cases. θs: Number of parameters to be optimzed.

Data Abbrev Class Att Case θs Data Abbrev Class Att Case θs

australian aust 2 15 690 130 hepatitis hepa 2 20 80 162

chess ches 2 37 3296 290 lymphography lymp 4 19 148 1220

cleve clev 2 12 296 1005 Mofn-3-10 mofn 2 11 1324 78

corral corr 2 7 128 46 pima pima 2 9 768 102

crx crx 2 16 653 848 segment segm 7 20 2310 2548

diabetes diab 2 9 768 102 Soybean-large soyb 19 36 316 5265

flare flar 8 11 1389 276 Tic-tac-toe tic- 2 10 958 152

german germ 2 21 1000 866 vehicle vehi 4 19 958 1152

glass2 glas 2 10 163 1038 vote vote 2 18 436 278
heart hear 2 14 270 118 Waveform-21 wave 3 22 301 3186

Two repairs were applied to satisfy the constraints for θtab ∈ [0, 1]:

θ
′

ab =

{
|θab| mod 1 if θab < 0
1− (θab mod 1) if θab > 1,
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and to keep the sum of row vectors equal to 1:

θ
′

ab = θab/
n∑

b=1

θab.

For the DE variants, 31 independent runs were performed on each dataset.
The parameter values used in each DE variant are detailed in Table 2. Such values
were adopted from the specialized literature [14] and by further experimentation.

Table 2. Parameter values of DE variants

DE algorithm NP G F CR c p |A|
rand/1/bin 200 25 × Att 0.5 0.7

JADE without A 200 10 × Att 0.05 0.05 ∅
JADE with A 200 10 × Att 0.05 0.05 NP

L-SHADE 200 10 × Att 0.05 0.05 NPg

4 Results

Based on the results summarized in Fig. 1, in datasets with a few number of
parameters θ, the DE variants provided better results than those of the GL
algorithms. Such behaviour was less marked in complex BN. Graphically there is
no difference among structure types. As expected, those algorithms that had CLL
as objective function, gave better results (Fig. 2). Regarding predictive accuracy,
there is no clear evidence in favor of any approach, although DE variants are
not the best, as shown in Figs. 3 and 4.

5 Conclusion and Future Work

A comparison of representative DE variants in an open problem about discrim-
inative learning of parameters in BNs was presented. This would lead to the
generation of classifiers with low bias that minimize the classification error.
Based on the results obtained, difficulties were noted for DE variants when
the number of parameters θ to be optimized increased. On the other hand,
it was also observed that bias in search for high-quality solutions as well as the
reduction in population size improved the DE variants performance. Future work
contemplates the application of strategies that are capable of contending with
big networks. Although it was not the purpose of this research, it is important
to evaluate the performance of the proposed DE variants against state-of-art
discriminative learning algorithms.
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Fig. 1. Best CLL obtained in 31 independent runs by the DE variants and CLL
obtained by the GL algorithms. Number of parameters θ are shown in parentheses.

1 2 3 4 5 6 7

CD

L−SHADE

JADE with A

JADE without A

rand/1/bin

ML

Bayesian

AWNB

Fig. 2. Critical Differences diagram for the median CLL value of 31 independent runs
(DE variants) and CLL value (GL algorithms). Horizontal line segments group together
algorithms with CLL that are not significantly different (at α = 0.05). Top line axis
ranks methods from best (left) to worst (right).
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Fig. 3. Predictive accuracy of 15 rounds of 2-fold CV with the parameters learned by
median of best solutions among 31 independent runs by DE variants and solution of
GL algorithms. Datasets are sorted by number of parameters θ (shown in parentheses).
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Fig. 4. Critical Differences diagram for median predictive accuracy of 15 rounds of
2-fold CV among algorithms. Horizontal line segments group together algorithms with
predictive accuracy that are not significantly different (at α = 0.05). Top line axis
ranks methods from best (left) to worst (right).
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