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Abstract. The present study examines how the frequency of mind wandering 

varies over time during a semantic sustained attention to response task. A model 

was built on the ACT-R cognitive architecture in order to replicate the study 

conducted by McVay & Kane (2009) on human participants, where subjects 

showed a notable increase in the frequency of mind- wandering over time. The 

model was able to replicate human behavior, showing a steady increase in the 

proportion of mind wandering with respect to attending over time. This increase 

was found to be statistically significant, thus supporting the hypothesis that mind 

wandering increases over time. Further research is proposed where more 

complexity is introduced in the model, so that it is able to better approach human 

behavior with respect to response times. 
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1 Introduction 

The experience of getting distracted is common to all human beings. While performing 

a given task, we may suddenly find ourselves thinking of some other topic, with little 

or no relation to the task at hand. This experience of distraction is called mind 

wandering, defined as the process of task-unrelated thinking that is initiated by the mind 

itself, as opposed to external triggers (Van Vugt, Taatgen, Sackur, Bastian, Borst, & 

Mehlhorn, 2015). It is a mental state (or a sequence of mental states) that arise freely in 

the absence of strong constraints on the content of thought (Christoff, Irving, Fox, 

Spreng & Andrews-Hanna, 2016). Mind-wandering as a mental state is more 

constrained than dreaming–given that the subject is consciously awake–but less 

constrained than creative thinking and goal-directed thought, where executive control 

is fully activated. 

In cognitive tasks–commonly measured in education–such as reading 

comprehension, aptitude tests, intelligence tests and sustained attention tasks, mind-

wandering has been found to have negative effects on performance (Mooneyham & 

Schooler, 2013; Smallwood & Schooler, 2015). Mind-wandering has also been found 
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to be correlated to increased error rates and variability in reaction times (Bastian & 

Sackur, 2013). Research on individual differences with respect to mind-wandering has 

shown a negative relationship between cognitive performance and the frequency of 

mind-wandering (Robison & Unsworth, 2018). Two theories have been posed in 

response to this. The control failure theory posits that mind-wandering arises 

spontaneously due to failure to maintain focus on the task (Mcvay & Kane, 2012). On 

the other hand, the lack of motivation theory argues that low-ability participants may 

feel disengaged from the task and therefore engage more in mind-wandering (Seli, 

Cheyne, Xu, Purdon & Smilek, 2015). 

It has been observed that the rate of mind-wandering does not change linearly with 

time, so we may not engage in mind-wandering for equal amounts of time, the same 

number of times during a given cognitive task. Mind-wandering is also more frequent 

in attention tasks that require less vigilance (Mcvay & Kane, 2012; Robison & 

Unsworth, 2018). In an experiment looking at mind-wandering during lectures, it was 

observed that over time the frequency of mind-wandering increased and the amount of 

time subjects remained focused on the lecture decreased gradually (Risko, Anderson, 

Sarwal, Engelhardt, & Kingstone, 2011). This effect of fatigue has been replicated by 

Stawarczyk & D'Argembeau (2016), who found that greater sleepiness predicted a 

higher frequency of mind-wandering and lower task performance. In another study, 

drivers reported engaging more in mind-wandering when they felt tired as opposed to 

when they felt more alert (Burdett, Charlton & Starkey, 2016). 

The present study will focus on mind-wandering during a sustained-attention-to-

response-task (SART) based on semantic categories. The task presents the participant 

with a stream of visual stimuli that can be either a target or a non-target. When a target 

stimulus is presented, they are required to press a key as soon as possible. When a non-

target stimulus is shown, they are required to withhold the key press (Cheyne, Carriere, 

& Smilek, 2009). 

In the semantic SART implemented by McVay & Kane (2009), the participant sees 

a series of words on the screen. Target and non-target words differ in their semantic 

category—targets are fruits such as “apple” and non-targets are animals such as “dog”. 

During the task, the subjects are occasionally prompted by a thought probe asking them 

whether their recent thoughts were about task-related matters (on-task) or other matters 

(off-task). Responses to thought probes are considered as self-reports of mind-

wandering: participants that report thinking of task-unrelated matters are taken to have 

been mind-wandering in the recent period. 

This type of SART adds some interesting complexity to the simpler version where 

stimuli are only letters—O’s are targets and Q’s are non-targets, for example. The 

semantic SART imposes more cognitive demand on the subject, leading them to search 

in their memory for the appropriate categorisation of the words that are presented. Thus, 

the semantic SART typically shows higher mean response times compared to simpler 

types of SART (McVay & Kane, 2009). Furthermore, there is scarce literature looking 

into complex SART versions connected to mind-wandering with a computer 

modelling approach. 

Hence, the aim of the study is to investigate how the frequency of mind-wandering 

varies over time during a semantic sustained-attention-to-response-task. This research 

question was tested on a computer model of McVay & Kane’s (2009) experiment, 

implemented in the Adaptive Control of Thought-Rational (ACT-R) cognitive 
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architecture. This makes it possible to measure how the proportion of on-task and off-

task thoughts varies across many consecutive SART trials, and to directly compare the 

model’s performance to that of human participants. McVay & Kane (2009) found that, 

with increased repetition of SART trials, the proportion of task-unrelated thoughts 

increases while on-task thoughts decrease. Following their results, it is expected that 

the frequency of mind-wandering will increase over time during the semantic SART 

performed by the model. 

2 Method 

A computer model of the semantic SART was implemented in ACT-R, which is a 

powerful cognitive architecture where cognitive tasks can be modelled by programming 

a series of if-then statements—called production rules—describing how the cognitive 

elements interact (Van Vugt et al., 2015). The model for this study was built upon the 

SART model developed by Van Vugt et al. (2015), which was extended to incorporate 

the semantic SART that McVay & Kane (2009) conducted on human subjects. A 

detailed description of the model is offered below. The LISP code for the ACT-R 

model, as well as the dataset used for analysis, can be found in the following repository: 

https://github.com/renzo-cuadra/mind-wandering-model 

2.1 Implementing Mind-Wandering 

Mind-wandering was implemented following Van Vugt et al.’s (2015) ACT-R model, 

where task-unrelated thoughts during SART arise due to competition between two 

goals: attend and wander. When the activation of the attend goal is higher, the model 

focuses on performing the task. On the other hand, when the activation of wander is 

higher, the model starts retrieving memories repetitively from the declarative module, 

until it retrieves one memory, which reminds it to pay attention to the task. Only then 

does the mind-wandering process stop. If during mind-wandering the model sees any 

stimulus on the screen, it immediately presses the “w” key as a default response. This 

simulates how a distracted person would respond automatically, without evaluating the 

appropriate response. After giving this default response, the model may retrieve either 

the attend or wander goal, depending on activation. If the wander goal is activated, the 

memory retrieval process will start again. If the attend goal is activated, the model will 

get back to the task. 

The production rules involved in this implementation of mind-wandering are shown 

below in pseudocode. The rule start-wandering begins the memory retrieval process as 

soon as the model detects that its current goal is wander. Then, the retrieve-memories 

rule checks that the memory retrieved is not the one that tells the model to pay attention 

and, if so, continues retrieving other memories. Meanwhile, the remember-to-attend 

rule activates when the pay-attention memory is retrieved, signaling the model to 

change its goal from wander to attend. 

Finally, the default-response rule fires when the model is in the wander state and the 

screen changes (that is, a stimulus is shown), after which the model presses the “w” key 

and retrieves a new goal: either attend or wander, once again. 
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No individual differences were considered as part of the mind-wandering 

implementation in this model. The only source of variation in model performance 

across runs was the stochasticity introduced by model parameters and the randomness 

in stimuli display and memory retrieval during mind-wandering: 

production start-wandering 

 IF 

  goal IS wander 

 THEN 

  retrieve memory 

production retrieve-memories 

 IF 

  memory retrieved 

  AND 

  memory NOT pay-attention 

 THEN 

  Retrieve memory 

production remember-to-attend 

 IF 

  memory retrieved 

  AND 

  memory IS pay-attention 

 THEN 

  set goal attend 

production default-response 

 IF 

  goal IS wander 

  AND 

  screen changed 

 THEN 

  press key w 

  AND 

  retrieve goal 

2.2 Implementing Semantic SART 

Semantic information was implemented by incorporating a vocabulary of fifteen animal 

words and fifteen fruit words in declarative memory, mimicking a subject with perfect 

knowledge of these words and their semantic categories, which is to be expected from 

an average adult, such as the participants in McVay & Kane’s (2009) experiment. Fruit 

and animal words were obtained from Battig & Montague’s (1969) list of the most 

common English words in these categories (see Table 1). The added chunks included 

mappings from strings to objects and from objects to categories. 

These mappings provide the model with knowledge of how a string of characters (a 

word) represents an object, and how that object belongs to a particular semantic 

category. The below mappings were provided for all fifteen words used in the 

model’s vocabulary: 

;; Chunks for string-to-object mappings 
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(map-apple isa word string "apple" meaning apple) 

(map-dog isa word string "dog" meaning dog) 

;; Chunks for object-to-category mappings 

(apple isa object title apple category fruit) 

(dog isa object title dog category animal) 

The process for performing the semantic SART is as follows: when the attend goal 

is activated and a stimulus is presented, the model reads the text, maps that string onto 

an object by retrieving the corresponding string-to-object mapping in declarative 

memory and then categorizes the object by searching the object-to-category mapping.  

After that, the model searches for the stimulus-response mapping to evaluate the 

appropriate response: it presses the “a” key if the object is a fruit and refrains from 

pressing any key if it is an animal. If, on the other hand, the model is in the wander state 

and it sees a new stimulus appear on the screen, it will press the “w” key as a default 

response. Figure 1 offers a graphical representation of this process. 

2.3 Implementing Thought Probes 

In McVay & Kane’s (2009) design, thought probes were presented as a menu where 

participants could select various options that represented how related their recent 

thoughts were to the task. In the model, however, thought probes are represented by an 

“X” on the screen. If a thought probe is shown and the attend state is active, the model 

will read it and map it to its proper response, which is to press the “x” key.  

If the wander state is on, it will give the default mind-wandering response and press 

the “w” key. This makes it possible to detect when the model was paying attention or 

mind-wandering whenever a thought probe is presented. All responses to thought 

probes were recorded in order to determine the frequency of mind-wandering 

throughout the experiment. 

Table 1. List of fifteen most common English words in the fruit and four-footed animal 

categories from Battig & Montague (1969). 

Nº Fruits Four-footed animals 

1 Apple Dog 

2 Orange Cat 

3 Banana Horse 

4 Grape Lion 

5 Pear Bear 

6 Peach Tiger 

7 Strawberry Cow 

8 Kiwi Elephant 

9 Pineapple Deer 

10 Watermelon Mouse 

11 Tomato Pig 

12 Plum Rat 

13 Grapefruit Giraffe 

14 Mango Squirrel 

15 Cherry Rabbit 
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2.4 Procedure 

The model was run 100 times in order to simulate 100 experiment participants. In each 

run, the model performed four blocks of the semantic SART, each one including 225 

trials of one word, for a total of 900 trials per run. Targets (fruit words) were presented 

in 89% of trials and non-targets (animal words) were presented in 11% of trials, with a 

random distribution. In each block, a thought probe was presented 120 times (53% of 

trials), interspersed randomly throughout all trials. 

The model’s responses to all thought probes were recorded: “x” key presses counted 

as on-task thoughts and “w” key presses counted as off-task thoughts. In order to 

measure the frequency of mind-wandering over time, the mean proportion of on-task 

and off-task responses per block was computed across all participants. Furthermore, 

response times were recorded to evaluate the model’s performance with respect 

to  humans. 

The independent variables in the study are the number of blocks of the semantic 

SART performed, the proportion of target vs. non-target words and the number of 

thought probes. All three were kept constant for all participants, as explained above. 

The dependent variable is the proportion of on-task and off-task responses and the 

response time in each block. 

 

Fig. 1. Graphical depiction of the process followed by the model to respond to stimuli, both in 

the attending and mind-wandering states. 
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2.5 Parameter Settings 

McVay & Kane’s (2009) results show a steep increase in the proportion of mind-

wandering with respect to attending over time (see Figure 2). The model assumes that 

this increase is due to growing activation of the wander goal. In order to achieve this, 

base-level learning was used with a decay rate of 0.1, to ensure that chunks that were 

recently activated would be strengthened for a long time.  

In addition, spreading activation was used with a value of 2.0 so that activation could 

be amply spread between associated chunks. The chunks that would bring the model 

into the attend state were given less activation than their peers. Lastly, all chunks were 

 

Fig. 2. Mean proportion of on-task vs. off-task thought reports by the model (N = 100) compared 

to human data (N= 243). Bars represent standard error. In McVay & Kane (2009), ratios do not 

add up to one in each block because a third intermediate option for thought probes was available. 

This was disregarded for purposes of this study. 
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initialized with a creation time of 10,000, except for the attend goal chunk, which was 

given a creation time of zero.  In this way, the model starts the task with a similar 

proportion of mind-wandering versus attending, but then mind-wandering rapidly takes 

over due to growing activation. 

3 Results 

The frequency of mind-wandering over time was measured as the proportion of on-task 

versus off-task thought reports. These can be seen in Figure 2, which compares the 

ratios obtained by the model to the ratios obtained by McVay & Kane (2009) from 

human participants. The model visibly approaches the rate of mind-wandering found in 

human subjects. Off-task thoughts start at an even proportion with on-task thoughts 

(both near 0.5) in block 1, but then increase steadily up to around 0.75 in block 4. That 

is to say, the model engages more frequently in mind wandering as time goes by 

figure 2. 

A one-way repeated measures ANOVA was conducted in order to assess the 

significance of the changes in the proportion of off-task thoughts over time. The 

proportion of off-task thoughts was found to be significantly different in every block, 

F(3, 297) = 531.47, p < 0.05, generalized η2 = 0.82. Post-hoc analyses with a Bonferroni 

adjustment revealed that all the pairwise differences between blocks were significantly 

different (p < 0.05). This shows that the rate of mind-wandering increases significantly 

from one block to the next. 

Response times (RT) were recorded as an indicator of the model’s performance with 

respect to human participants’ in McVay & Kane (2009). Model response times show 

a decrease from block 1 through block 4, unlike human response times, which remain 

stable (see Figure 3). While the model’s performance improves over time in spite of the 

growing frequency of mind-wandering, humans do not show such a decisive 

improvement over time. 

 

Fig. 3. Mean reaction time in the model compared to the data from McVay & Kane (2009). 
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Performance was further assessed by the mean standard deviation of intra-individual 

response time per block, which indicates the extent to which response times vary over 

time for the average participant. In this regard, the model’s behavior differs notably 

from that of humans: while mean intra-participant SD of response times increases 

notably over time in humans, in the model it decreases (see Figure 4). 

With respect to response time, humans behave much more erratically over time, 

whereas the model does just the opposite: it shows more consistent behavior from one 

block to the next. 

4 Discussion 

The present study examined how the frequency of mind-wandering varies over time 

during a semantic SART. An ACT-R model was built in order to replicate the study 

conducted by McVay & Kane (2009) on human participants. Following McVay & 

Kane’s (2009) findings, it was hypothesized that the frequency of mind-wandering 

would increase over time.  

The model was able to reflect successfully the performance of human participants 

with respect to the frequency of mind-wandering, showing a steady increase in the 

proportion of off-task thoughts and a decrease in the proportion of on-task thoughts 

throughout the experiment. The increase in the proportion of off-task thoughts was 

found to be statistically significant across all blocks. These results support the 

hypothesis that the frequency of mind-wandering increases over time during a 

semantic SART. 

These findings provide additional evidence in support of the control failure theory 

of mind-wandering proposed by Mcvay & Kane (2012). Considering mind-wandering 

to be the product of a competition between the goal of attending and the goal of 

retrieving memories, following the model proposed by Van Vugt et al. (2015), renders 

 

Fig. 4. Mean intra-individual reaction time standard deviation in the model compared to 

McVay & Kane’s (2009) data. 
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a successful model of human performance in a cognitive task. Under this proposal, 

control failure arises from the memory retrieval goal taking over the attending goal, 

thus clouding executive control. 

This model also provides a plausible mechanism for how attention may decrease 

over time due to the growing prevalence of mind-wandering, as the memories being 

retrieved in this process are strengthened by recurrent retrieval cycles. This is in line 

with the positive correlation of fatigue and mind-wandering frequency, as well as their 

negative effect on performance, as reported by Risko et al. (2011), Mcvay & Kane 

(2012), Burdett et al. (2016), Stawarczyk & D'Argembeau (2016) and Robison & 

Unsworth (2018). 

Further assessment of the model was focused on response time. In the model, the 

reduction in response time is related to the increase in mind-wandering over time. When 

mind-wandering, the model does not take the time to find the correct response for the 

given stimulus and just responds automatically, thus reducing mean response time. In 

human participants, however, response times remain approximately stable across 

blocks. This implies that the decrease in response time in the model should not 

necessarily be regarded as a sign of learning, but rather a mere side-effect of the 

increase in mind-wandering, which is not present in humans. 

The model also shows a notable difference with regard to response time variability. 

Humans tend to be more erratic in their response times as they do more trials—most 

likely due to fatigue and the growing rate of distraction. However, the model shows 

more consistent response times across trials. This is also due to the growing frequency 

of mind-wandering, which leads the model to give more automatic responses 

more often. 

In humans, however, mind-wandering is associated with inconsistent performance, 

which indicates that the default responses implemented in the model are likely to be an 

oversimplification of the response mechanism used in human cognition. 

These discrepancies indicate that the model is unable to capture the full complexity 

of human performance. Therefore, suggestions for future research involve developing 

the model further, while keeping the growing trend in mind-wandering over time. For 

instance, the default response mechanism in mind-wandering could be extended to 

accommodate a range of responses, some of which may involve some degree of 

cognitive processing—thus increasing response time. A more complex system of 

memory retrieval could be used for mind-wandering, where some memories may be 

more pervasive than others. The model’s vocabulary can also be extended with a larger 

set of words and categories. Furthermore, thought probes could consider the option 

range given in McVay & Kane (2009). This would bring the model closer to humans’ 

more variable performance. 

Finally, this modelling approach of mind-wandering through competing goals 

should be applied to other cognitive tasks. It will then be possible to examine how the 

frequency of mind-wandering and response time vary in those tasks and to compare 

that performance to the semantic SART. 

The utility of studying the mechanisms of mind-wandering is in deepening our 

understanding of how human cognition and executive control behave in task-oriented 

scenarios. Applications of this research are especially useful in educational and work 

environments, where enhancing learning and productivity by maximizing the time 

spent focusing on the task as opposed to mind-wandering is key to meeting performance 
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goals. Building cognitive models of mind-wandering in various tasks may reveal which 

task attributes make participants more or less prone to off-task thoughts, which may aid 

teachers or managers in designing tasks that facilitate performance. Similarly, studying 

individual differences in mind-wandering may prove extremely useful in assisting low-

performing individuals to improve performance by enhancing task focus. In sum, 

expanding our insight into mind-wandering could largely advance the way humans 

learn and work. 
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