
Exploring Storing Capacity of Hyperdimensional Binary

Vectors

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández,

Marco Antonio Ramírez Salinas

Instituto Politécnico Nacional (IPN), Centro de Investigación en Computación,

Mexico City, Mexico

jobquiroz@hotmail.com, barron2131@gmail.com, marco.a.ramirez.s@gmail.com

Abstract. Hyperdimensional computing is an emergent model of computation

based on the manipulation of high-dimensional vectors which are used not only

to represent variables and values, but also to represent complex structures such

as relations, sets and sequences. All vectors in the model are always the same

size either if they represent a single concept or a sequence of objects.

Hyperdimensional computing uses reduced representations, since there is a

compression process to encode complex structures while maintaining the same

size on the output vector. In this paper we explore the storing capacity of

hyperdimensional vectors that encode semantic feature norms. We describe a

method for encoding and retrieving feature information of concrete concepts and

present experimental results of the successful retrieval of such features.

Keywords: hyperdimensional computing, vector symbolic architectures,

reduced representations, semantic pointer architecture.

1 Introduction

Hyperdimensional computing (HD computing) is based on the properties of high-

dimensional vectors and arithmetical operations perform on them. HD computing takes

ideas from artificial neural networks in the sense that processing is performed in a

distributed fashion; it is also inspired on symbolic computing because complex

structures, such as hierarchical trees or sequences, can be formed by manipulating

symbols (vectors) that represent simpler objects. Additionally, HD computing also

“includes ideas from probability theory, statistics and abstract algebra” [14].

The use of high-dimensional vectors comes implicit with Artificial Neural Networks

(ANN), but in HD computing vectors are not only part of the architecture but are the

basic computing entities itself. Hyperdimensional vectors can be manipulated to make

associations, form hierarchies and perform other types of cognitive computations,

formation of these types of complex structures is one of the weak points of ANN [4].

The main property of HD computing is that it can operate with approximate patterns,

providing flexibility to the computing system and allowing it to scale to large learning

applications. HD computing is becoming more relevant as a cognitive modeling tool.

375

ISSN 1870-4069

Research in Computing Science 148(10), 2019pp. 375–382; rec. 2018-08-12; acc. 2018-09-25

mailto:jobquiroz@hotmail.com
mailto:barron2131@gmail.com

 Semantic features “represent the basic conceptual components of meaning for any

lexical item” [5]. Any lexical term is associated with a set of semantic features each of

which constitutes one component of a word’s intension, semantic features try to

establish the meaning of a word in terms of its relationships with other words. Since

semantic feature are subjective they must be obtained empirically. In [11] McRae et al,

describe a set of semantic feature norms collected from approximately 725 participants

for 541 concrete concepts.

In this work, we explore the storing capacity of hyperdimensional binary vectors that

encode semantic features norms from McRae’s dataset. Our aim is to measure the

maximum number of vectors that can be stored, and later retrieved, within a single

vector, our hypothesis is that for straightforward encoding methods it is not necessary

to have vectors above 5,000 dimensions.

Our experimental results will be used for selecting the appropriate dimensionality of

vectors within a HD computing system still in development.

The rest of the paper is organized as follows: Section 2 summarizes several related

works to HD computing for concept representation. Section 3 explains the general

properties of HD computing and describes how to represent semantic features. In

Section 4 we present the experimental results and finally, Section 5 draws the

conclusions and future work.

2 Related Work

2.1 Hyperdimensional Computing

In [9] Kanerva introduces the term Hyperdimensional Computing as a model for

cognitive computing, in his work he summarizes the main properties of the model, and

some current applications for it. But even before that, during the mid-1990s, a class of

connectionist network architectures called Vector Symbolic Architectures (VSA)

started to be developed. These architectures use arithmetical operations on vectors for

encoding structure using distributes representations [7].

 The Semantic Pointer Architecture is a VSA developed to model a high-level

cognitive system that is also biologically plausible. The main hypothesis for the model

is that “Higher-level cognitive functions in biological systems are made possible by

semantic pointers.” [1]. A semantic pointer is a high dimensional vector that can be

used to access large amounts of information within memory, it has the function of a

pointer, but unlike conventional pointers, semantic pointers are similar to the

information they point to.

 The Semantic Pointer Architecture (SPA) has extensively been in [1], and it has been

used in “Spaun”, a large-scale spiking neuron model capable to integrate perception,

cognition and action across several different tasks [2]. SPA provide a unified

framework to study cognition, to model working memory and to encode natural

language sentences, all with the same representation mechanisms:

hyperdimensional vectors.

 Crawford et al. implemented a large-scale knowledge base called WordNet using the

SPA. WordNet is a manually constructed lexical database of the English language [3],

376

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 148(10), 2019 ISSN 1870-4069

where each word is associated with multiple meanings forming a complex hierarchical

structure of concepts. This work is relevant to Hyperdimensional Computing because

it demonstrates how hyperdimensional vectors can be used to encode complex

cognitive structures while maintaining flexibility and efficiency.

2.2 Semantic Feature Norms

Semantic feature norms are another way to describe a concept, that unlike WordNet

definitions, are empirically obtained by interviewing people: each person is presented

with a set of concept names and are asked to list the features he thinks “are important

for each concept”.

These feature representations have been used to “provide insight into a number of

phenomena involving semantic memory and categorization”. Additionally, semantic

feature norms can be useful to develop models of semantic memory and concept

representation. Since semantic feature norms are directly obtained by asking people

they tend to be ambiguous, however this is the type of communication that prevails in

the real world.

In this work we use binary high dimensional vectors for encoding concepts described

by semantic feature norms from the largest dataset in literature, we explore the capacity

for storing and later retrieving each of the features composing a concept description.

3 Hyperdimensional Computing Background

One of the most relevant properties of the high-dimensional spaces is that most of the

space is nearly orthogonal to any given point. This means that if two random vectors

are generated, it is highly probable (more than 99.999%) they are mutually orthogonal,

new symbols (vectors) can be stored into memory without clashing with

preexisting elements.

These properties where exploited in the SDM model developed by Kanerva in 1988

[10]. However, the properties of high-dimensional spaces can also be used to perform

other type computations, for which is necessary to define a set of HD

computing operators.

3.1 HD Computing Operations

HD computing is mainly about manipulating and comparing patterns, such patterns are

stored in an associative memory where all original vectors are stored and where new

generated vectors can be cleaned up and be approximated to one or more of the original

vectors.

HD computing has three main operations: addition, multiplication and permutation.

In this work we use binary vectors, addition is an element-wise binary average,

multiplication is an element-wise exclusive-or and permutation is realized by a logical

shift. A more detailed explanation of HD Computing operations can be found in work

of Kanerva [13].

377

Exploring Storing Capacity of Hyperdimensional Binary Vectors

Research in Computing Science 148(10), 2019ISSN 1870-4069

All previous operators allow us to encode, map and retrieve hyperdimensional

patters, but in most cases the retrieval is not going to be exact. For example, 𝑋 = 𝑋1 ∗
𝐴 + 𝑋2 ∗ 𝐵 is storing the association of 𝐴 with 𝑋1 and 𝐵 with 𝑋2. In order to retrieve 𝐴

we can multiply 𝑋 by 𝑋1:

𝑋 ∗ 𝑋1 = (𝑋1 ∗ 𝐴 + 𝑋2 ∗ 𝐵) ∗ 𝑋1 ⇒ 𝑋 ∗ 𝑋1 = 𝐴 + 𝑋1 ∗ 𝑋2 ∗ 𝐵. (4)

The resulting vector contains the sum of the desire value (𝐴) and an unknown vector

(𝑋1 ∗ 𝑋2 ∗ 𝐵), to discriminate this last vector, we can use a clean-up memory that

approximates 𝑋 ∗ 𝑋1 to 𝐴:

𝑅𝑒𝑎𝑑(𝐴 + 𝑋1 ∗ 𝑋2 ∗ 𝐵) = 𝑅𝑒𝑎𝑑(𝐴 + 𝑛𝑜𝑖𝑠𝑒) = 𝐴. (5)

When a noisy version of an item is given as input, the memory must either output

the most similar item, according to a distance metric, in this case hamming distance, or

indicate that the input is not close enough to any of the store items.

3.2 Encoding Feature Representations

Feature representation of a concept consists of a list of features that, according to

people, are the most important to that concept. A concept feature usually consists of

two or more words, usually a verb followed by another concept, depending on these

words a feature can be classified within a feature type. In Table 1, we show an example

for the feature representation for knife found in McRae’s dataset.

Table 1. Feature representation for knife.

Concept

name
Feature

Production

frequency
Brain Region Classification

 has a handle 14 Visual-form and surface

 made of steel 8 Visual-form and surface

 is shiny 5 Visual-form and surface

 used for cutting 25 Function

Knife used for killing 7 Function

 is sharp 29 Tactile

 is dangerous 14 Encyclopedic

 found in kitchens 8 Encyclopedic

 a weapon 11 Taxonomic

 a utensil 9 Taxonomic

The most straightforward way to encode feature representation is by generating two

vectors, one for the name of the feature, i.e. ‘has’, and another for its value, i.e. ‘handle’,

and then using the multiplication operator for binding them together. Once each feature

is represented as a pair of binded vectors the next step is to add all the features to

produce a single vector that encodes all the features associated with the concept. By

applying the proper operations, we can extract the value for each of the features

encoded in the vector:

𝑘𝑛𝑖𝑓𝑒 = ℎ𝑎𝑠 ∗ 𝑏𝑙𝑎𝑑𝑒 + 𝑚𝑎𝑑𝑒. 𝑜𝑓 ∗ 𝑠𝑡𝑒𝑒𝑙 + 𝑡𝑒𝑥𝑡𝑢𝑟𝑒 ∗ 𝑠ℎ𝑖𝑛𝑦 + ⋯ + 𝑖𝑠 ∗ 𝑢𝑡𝑒𝑛𝑠𝑖𝑙. (6)

378

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 148(10), 2019 ISSN 1870-4069

In the McRae’s dataset all concepts have a different number and type of features,

and in most cases, there are two or more features of the same type, either because an

object is composed by several parts and therefore the ‘has’ feature type appears more

than once, or because and object has several options for some features, i. e. an apple

can be red, green or yellow. These cases do not represent a problem in the encoding

process because hyperdimensional multiplication distributes over addition [9] and

therefore we can encode each feature independently without knowing if there are more

features that share the same type:

𝑎𝑝𝑝𝑙𝑒 = 𝑖𝑠 ∗ 𝑓𝑟𝑢𝑖𝑡 + ℎ𝑎𝑠 ∗ 𝑠𝑘𝑖𝑛 + 𝑐𝑜𝑙𝑜𝑟 ∗ (𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑦𝑒𝑙𝑙𝑜𝑤)

 = 𝑖𝑠 ∗ 𝑓𝑟𝑢𝑖𝑡 + +ℎ𝑎𝑠 ∗ 𝑠𝑘𝑖𝑛 + 𝑐𝑜𝑙𝑜𝑟 ∗ 𝑟𝑒𝑑 + 𝑐𝑜𝑙𝑜𝑟 ∗ 𝑔𝑟𝑒𝑒𝑛 + 𝑐𝑜𝑙𝑜𝑟 ∗ 𝑦𝑒𝑙𝑙𝑜𝑤.
(7)

From equation 7 we can see the semantic pointer 𝑎𝑝𝑝𝑙𝑒, it is a pointer because is a

mean to access more information in memory, we can extract each feature value and,

since a feature value can be a semantic pointer itself, we can proceed to explore them

in more detail. Semantic Pointers can be used to represent hierarchies, Figure 1, where

every level in the hierarchy is a deeper exploration within a semantic pointer.

Fig. 1. Semantic Pointer Vectors can represent hierarchical structures.

3.3 Retrieving encoded feature values

Once a concept has been encoded, following equation 6, we have to be able to retrieve

the feature values associated with it, to do this the inverse operation has to be applied

to the semantic pointer, in the case of binary vectors the XOR operation is its

own inverse.

Since in our approach we can have more than one feature value associated to a

feature type our clean-up memory outputs, not only the closest vector to the feature

value obtained, but all the vectors that are similar enough according to certain

threshold value:

𝑖𝑠 ∗ 𝑎𝑝𝑝𝑙𝑒 ≅ 𝑓𝑟𝑢𝑖𝑡 𝑐𝑜𝑙𝑜𝑟 ∗ 𝑎𝑝𝑝𝑙𝑒 ≅ (𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤). (8)

To extract all feature values from a semantic pointer it is necessary to know its

correspondent feature types, however once a vector is already encoded there is no way

to know which feature types are present within this semantic pointer. In order to extract

the feature values, we multiply the semantic pointer with all the feature type vectors in

the system and, by using the clean-up memory, verify which vectors are meaningful

after the multiplication is done. This process is explained in Algorithm 1.

379

Exploring Storing Capacity of Hyperdimensional Binary Vectors

Research in Computing Science 148(10), 2019ISSN 1870-4069

Algorithm 1. Extracting feature value vectors from a semantic pointer.

Function GetFeatureValues (SPvector):

 FeatTypes = [is, has, color, shape, …] -- All feature types

 FeatValues = []

 For each FtType in FeatTypes:

 ValueVec = FtType * SPvector

 ValueVec = CleanUpMemory (ValueVec)

 If ValueVec is not null:

 ValueVec.push(FeatValeus)

 Return ValueVec

The function CleanUpMemory returns a list of all the FeatureValue vectors that are

close enough to the input vector. Two vectors have a very high probability of being the

same when its normalized hamming distance is around 0.45.

4 Experimental Results

We performed several experiments to test the maximum capacity for storing and

retrieving feature values from semantic pointer vectors representing definitions of

concepts from the McRae’s dataset.

During the experiment we randomly select a set of concepts from the dataset and

encode them into our associative memory, using binary hyperdimensional vectors.

Additionally, we store a list of all the feature values for each selected concept to later

compare them with the values extracted from the semantic pointers.

The average number of feature values for the concepts in the McRae dataset is

around 17 and the maximum being 22, however, to explore the maximum storing

capacity of the semantic vectors we defined additional concepts by randomly selecting

features from the dataset, the maximum number of features for a concept was 70.

Table 2 shows the percentage of successful retrievals of feature values for N-size

semantic pointers and the number of features in vector ranging from 10 to 70. Figure 2

illustrates these same results.

Based on the obtained results and considering that the maximum amount of features

in the McRae dataset is 22, we can state that a binary vector of size N = 2,500 is enough

to store the feature representations of concepts from the used dataset. Even though some

sources [8, 9] indicate that 10,000 bits can be convenient for most applications, in our

case the size of our vectors might be smaller which has a direct impact on the processing

time of our system.

We can also observe how the percentage of retrieved features increases as the

dimensionality of the vector increases but not in a linear fashion, for example for a

vector size of N = 5,000 we can retrieve 86% of all values in a semantic pointer

composed by 50 features, if we double the size of the vector, N = 10,000, we can

retrieve 82% of the features.

Even though this might seem a small increment it is very relevant to our work

because, by the way in which we encode all the features, there is no way to know if the

380

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 148(10), 2019 ISSN 1870-4069

retrieved features are the most important, in terms of frequency for example, for the

concept. There might be ways to ensure that the most important features are retrieved

first, but for the characteristics of this dataset it is unnecessary.

Table 2. Storing capacity of binary semantic pointers.

Number of

Features in

Vector

Successfully retrieved features (%)

N = 1,000 N = 2,500 N = 5,000 N = 7,500 N = 10,000

10 100 % 100 % 100 % 100 % 100 %

20 95 % 100 % 100 % 100 % 100 %

30 90 % 100 % 100 % 100 % 100 %

40 72.5 % 92.5 % 95.0 % 100 % 100 %

50 70.0 % 68.0 % 86.0 % 92.0 % 82.0 %

60 58.3 % 46.7 % 61.7 % 56.7 % 61.7 %

70 38.6 % 42.9 % 34.3 % 34.3 % 27.1 %

Fig. 2. Storing capacity for N-size semantic pointers.

5 Conclusions and Future Work

This work presents an empirical exploration of the storing capacity of binary semantic

pointers as a mean to represent sematic feature norms. We presented some highlights

of Hyperdimensional Computing, an emergent model of computation based on the

381

Exploring Storing Capacity of Hyperdimensional Binary Vectors

Research in Computing Science 148(10), 2019ISSN 1870-4069

manipulation of high-dimensional vectors. This type of computation allows us to

encode from single concepts up to more complex data structures such as sequences.

 We describe how feature representations might be encoded into high-dimensional

vectors and we describe a straightforward method to retrieve such vectors. We perform

experiments for encoding randomly chosen vectors from the largest known dataset of

semantic feature norms.

 This works presents preliminary results from a larger project that pretends to encode

the entire McRae dataset into a Vector Symbolic Architecture for a Semantic Net-

work, the results presented allow us to decide the size of the vectors to be used in the

complete system.

Acknowledgements. This work has been funded by SIP-IPN under grant SIP-

20181698 and also by CONACYT scholarship number 666415.

References

1. Eliasmith, C.: How to build a brain: A neural architecture for biological cognition. USA:

Oxford University Press (2013)

2. Eliasmith, C., Stewart, T., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.: A large-scale

model of the functioning brain. Science, 338 (6111), 1202–1205 (2012)

3. Fellbaum, C.: WordNet and wordnets. Encyclopedia of Language and Linguistics. Second

Edition, Oxford: Elsevier, pp. 665–670 (2005)

4. Fodor, J. A., Pylyshyn, Z. W.: Connectionism and Cognitive Architecture: A Critical

Analysis. Cognition 28(1):3–71 (1988)

5. Fromkin, V., Rodman, R., Hyams, N.: An Introduction to Language. Boston, MA:

Wadsworth, Cengage Learning, p. 578 (2014)

6. Gallant, S., Okaywe T.: Representing Objects, Relations and Sequences. Neural

Computation 25(8):2038–2078 (2013)

7. Gayler, R.: Vector Symbolic Architectures answer Jackendoff’s challenges for Cognitive

Neuroscience. In: ICCS/ASCS International Conference on Cognitive Science. CogPrints,

Sydney, Australia, University of New South Wales, 133–138 (2003)

8. Kanerva, P.: Computing with 10,000-bit words. In: 52nd Annual Allerton Conference on

Communication, Control and Computing, Monticello, IL, pp. 304–3010 (2014)

9. Kanerva, P.: Hyperdimensional Computing: An Introduction to Computing in Distributed

Representation with High Dimensional Random Vectors. Cognitive Computation 1(2), 139–

159 (2009)

10. Kanerva, P.: Sparse Distributed Memory. Cambridge, MA: Bradford/MIT Press (1988)

11. McRae, K., Cree. G., Seidenberg, M., McNorgan, C.: Semantic feature production norms

for a large set of living and nonliving things. Behavior Research Methods, Instruments &

Computers, 37(4):547–559 (2005)

12. Plate, T.: Holographic reduced representation: distributed representation of cognitive

structure. Stanford: CSLI (2003)

13. Quiroz, K., Barrón, R., Ramírez, M.: Sequence Prediction with Hyperdimensional

Computing. Research in Computing Science, 138 (2017)

14. Rahimi, A., Datta, S., Kleyko, D., Paxon, E., Olshausen, B., Kanerva, P., Rabaey, J.: High-

Dimensional Computing as a Nanoscalable Paradigm. IEEE Transactions on Circuits and

Systems: Regular Papers (99), 1–14 (2017)

382

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 148(10), 2019 ISSN 1870-4069

