
Convolutional Model with Classification through
Izhikevich Neuron

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mej́ıa-Lavalle

Tecnológico Nacional de México/CENIDET, Cuernavaca, Morelos, Mexico
{jesus.luna18ce,dantemv,mlavalle}@cenidet.edu.mx

Abstract. This paper presents the fusion of two paradigms of neural
networks: the Convolutional Neural Networks from deep learning and
the third generation Izhikevich neuron. This fusion has the purpose
to replace the multilayer perceptron layers, that usually represent a
computational cost and a large training time, for a paradigm created
to classify with a single neuron. The experimentation is carried out
in the classification domain, predicting the directions of rotation in a
simulator of self-driven vehicles. The experiments show similar results
to the multilayer perceptron model in the evaluation metrics but the
training time is reduced.

Keywords: Izhikevich neuron, convolutional neural network, deep learn-
ing, steering classification.

1 Introduction

Deep Neural Networks is one of the most used techniques nowadays for the object
detection and classification in digital images, because they do not require specific
parameters for each type of image, they adapt to the image in a automatic.
However, one of the great disadvantages of this paradigm is the slow training
process, which even with hardware of great processing capacity, requires hours
or days of processing. Another limitation is the need for large databases to train
and be able to perform the task successfully.

To reduce the training time of a Deep Neural Network, several solutions
have been proposed. One way to reduce time is to reduce the training data, a
related paper is [4] in which it is proposed to make a selection of representative
data with heuristic values granted by human experts, this method decrease the
training time without affecting the performance of the neural network. There
are also more intelligent proposals in which techniques accelerate the learning of
the network. For example in [18] is proposed to use an optimization technique
based on Particle Swarm for the backpropagation, decreasing training epochs.
Another way to accelerate learning is by intelligently tuning of the training
parameters using sophisticated techniques like the shown in [17], which presents
an optimization of the learning rate, and likewise to the previous proposal,
decreasing the training epochs.

65

ISSN 1870-4069

Research in Computing Science 148(10), 2019pp. 65–80; rec. 2019-06-04; acc. 2019-07-24

A less sophisticated but effective alternative to reduce training time is to
increase the hardware used for this task, for example in [7] a framework is created
to distribute the processing in a cluster of servers. And on the other hand, the
use of deep neural networks in embedded systems has been very difficult due
to the need for powerful hardware, which has forced to improve the devices in
which these systems are used, as in the work of [10].

Although the proposals of the state-of-the-art present acceptable results there
are some complications. In the first place, using only representative data might
cause the network not to be able to classify correctly those objects that are not
very recurrent in the training data or that resemble the most common ones. On
the other hand, although intelligent methods for learning acceleration are the
ideal technique to reduce the training epochs, it implies a second processing and
as is well known, the convergence of the Particle Swarm algorithm requires a long
time due the complexity of O(n · p + Cof · p) where n is the dimension of the
problem p is the population size and Cof is the cost of the objective function.
For this reason, although they reduce epochs, training time can be increased.
Finally, enhancing hardware is not the best option when you do not have the
necessary resources.

A solution proposal more to the problem is the implementation of a updated
neuronal paradigm. In this document is proposed the fusion of a Convolutional
Neural Network for the extraction of information from digital images and the
Izhikevich Neuron [8] used as a control model. The combination of the deep
learning paradigm and the third-generation neuron allows a reduction of the
training time without using algorithms or additional methods to the training of
this neuronal model. The fusion of these paradigms allows to reduce the number
of neurons in the classification layers (multilayer perceptron) thus causing a re-
duction of the processing without affecting the performance in the classification.

The following sections of the document sections are organized as follows. The
Section 2 describes the theoretical concepts necessary to understand the func-
tioning of convolutional layers in a deep neural network. The description of the
third generation Izhikevich neuron is shown in the Section 3, as well as the fusion
of this with the convolutional layers. The data used for the experimentation, the
methods of evaluation and the configurations of the experiments are presented
in the Section 4. Finally the results obtained and the comparison is made in the
Section 5 and the conclusions in the Section 6.

2 Background

2.1 Convolutional Network

This type of neural network has great advantages of automation in the task
of extracting image information. In this paradigm, no known image processing
filter is applied, but through the training, it learns the image processing filters.
In general, the first convolutional layer learns to detect edges, while the second
can learn to detect more complex shapes that can be formed by combining

66

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

different edges, such as circles and rectangles. The third layer and beyond learn
much more complicated features based on the characteristics generated in the
previous layer [14].

The Convolutional Neural Networks (CNN) are based on the convolution
of signals in two dimensions and on the detection of filter-based characteristics
(called kernel) that they learn through training. To extract the information, the
kernel performs the 2D convolution operation, expressed in the Equation 1, to
the input image. Where N and M are the dimensions of the image, n1 and n2
represent the column and row indices of the pixel being processed, k1 and k2 the
kernel indexes [12]:

y(n1, n2) =

N−1∑
k2=0

M−1∑
k1=0

x(k1, k2)h(n1 − k1, n2 − k2)

0 ≤ n1 ≤ N − 1, 0 ≤ n2 ≤M − 1.

(1)

To train the convolutional layers, the backpropagation of the error technique
is used through the convolutional layers. This is very similar to the backprop-
agation for a multilayer perceptron network, the difference is that the weight
connections are scattered, since the different input areas share the same weights
to create a map of output characteristics. In general, the feature map is obtained
through the function expressed in (2). Where w represent the kernel weights
and a a first feature map obtained. On the other hand, the kernel weights are
adjusted by calculating the descendant gradient which is expressed in (3). Where
L represents the error function:

Sij =

2∑
n=1

2∑
m=1

w(3−m)(3−n) · a(i−1+m)(j−1+m), (2)

∂L

∂wij
=

2∑
j=1

2∑
j=1

∂L

Sij

∂Sij
∂wij

. (3)

In the generality of the Convolutional Neural Networks, there are layers
of dimensionality reduction; Max Pooling layers are given by a discriminant
function where the maximum value is selected in each region of the image
by moving a kernel through it, thus generating a new feature map of smaller
dimensions to the original. The function of this filter is given in (4), where n is
the kernel dimension, N is the dimension of the image and u(·) is the window
function:

aj = max
N×N

(an×ni u(n, n)). (4)

On the other hand, there exists layers of Average Pooling, which follows the
same principle as the previous one, with the difference that in this, the kernel

67

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

take an average of the region according to (5) [16]:

aj =

∑
N×N

an×ni

N2
. (5)

2.2 Izhikevich Neuron

This model emulates the pulsation behavior of a certain type of neurons known as
cortical. The model combines the biological plausibility of Hodgkin-Huxley-type
dynamics and the computational efficiency of integration and firing neurons
(spiking networks) [9]. This neuron has the ability to perform non-linear classifi-
cation unlike its predecessor, the simple perceptron. The model in question has
been evaluated in multiclass [15] and non-linear applications [13].

Algorithmically this neuron depends on a series of parameters, which are
distributed in three equations [6]; (6) represents the energy gain of the neuron,
in (7) recovers the energy through time and finally (8) emulates the pulse of the
neuron to reach a certain threshold and the restart of the neuron gains [5]:

C
dv

dt
= k(v − vr)(v − vt)− u+ I, (6)

du

dt
= a(b(v − vr)− u), (7)

v ≥ vpeak ⇒
{

v ← c,
u← u+ d.

(8)

The weight adjustment is one of the contributions of [5] to Izhikevich’s
original model. This adjustment is given by calculating the difference in pulses
obtained and expected, multiplied by the inner product of the synaptic weights
w and the inputs x, scaled by the learning rate α. However, this method works
correctly for the binary classification, but for a classification of multiple classes
it is necessary to make an extension of this function using the medium, as shown
in (9):

∆w = α ·
n∑
i=0

1

n
(y − y′)2 · (w × x). (9)

In general, an Izhikevich neuron is trained through N epochs, for each the
calculation of synaptic currents I is made based on the inner product of the
weights and the inputs plus the bias, this synaptic current serves input for the
calculation of the membrane potential of the v neuron that accumulates through
1000 iterations, achieving y pulsations. The algorithm of a single epoch is defined
as shown in Algorithm 1.

68

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

Algorithm 1 Izhikevich neuron algorithm.

Input: x ∈ Rn, y′ ∈ Z
Output: y ∈ Z
I ← [(w × x) + 1]2 + θ
u← 0
v ← vr
for i← 0 to i = 1000 do
v ← v+[k(v−vr)−(v−vt)−u+I]

C

u← d[b(v − vr)− u]
if v ≥ vpeak then
v ← c
u← u+ d
y ← y + 1

end if
end for

E(w)← 1
n

n∑
i=0

(yi − y′i)2

∆w ← α · E(w) · (w × x)
return y

Here x ∈ Rn represents the input vector, y ∈ Z the number of pulses emitted
by the neuron and y′ ∈ Z the expected pulses. w ∈ Rn represents the weights
that match the inputs. The variable v ∈ R represents the membrane potential of
the neuron and u ∈ R represents a variable of membrane recovery, which explains
the activation of ionic currents k ∈ R and the inactivation of ionic currents, and
provides negative feedback to v.

3 Convolutional Network and the Izhikevich Neuron
Fusion

As mentioned in the Section 1, the use of another type of neuron than the percep-
tron in the classification layer reduce the training time. To extract information
from digital images, it is still necessary to use a Convolutional Neural Network,
however it is possible to replace multilayer perceptron layers, in this case by a
spiking Izhikevich neuron.

In general, the fusion occurs when the numerical information obtained in
the process carried out by the CNN is extracted. This numerical information is
introduced as a synaptic vector to the Izhikevich neuron, similar to how it is
done with the simple perceptron. The neuron performs the process mentioned in
Algorithm 1 during trainingN epochs to adjust the weights w. Unlike the percep-
tron, the Izhikevich neuron does not return predictions given by the function σ(·)
where y′ ∈ R→ [0, 1] or by the function tanh(·) where y′ ∈ R→ [−1, 1], but this
neuron returns pulses which comprise y′ ∈ Z→ [0,∞]. So in the implementation
was necessary a transformation of the labels of each class.

69

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

The implementation was handled as two dependent modules, a function was
implemented that communicates both modules. From the CNN, extract the
vector of characteristics obtained from the image and in the opposite direction
normalize the cost function (Mean Squared Error mentioned in the Section
4) obtained from the Izhikevich neuron and introduced into the CNN for the
backpropagation. The fusion of these modules is seen in Figure 1.

Fig. 1. Network fusion scheme.

3.1 Model Setup

As mentioned earlier, Izhikevich neuron depends on a series of constant param-
eters. These parameters must be configured in an appropriate way to achieve
good classification results, experiments were performed with the configurations
proposed by [3] and [15], however the best results were obtained with the con-
figuration proposed in [5]. The parameters used are shown in Table 1.

Table 1. Parameters of the Izhikevich neuron.
Parameter Value

a 0.03
b -2
C 100
d 100
vr -60
vt -40
c -50
k 1.7

vpeak 35

α 1.0−5

w 0.0

Although the original model proposed by Izhikevich establishes the value of
the bias θ as a constant, the observation of the antecedent paradigms is that
they update this value of bias in a similar way to the weights w, for this reason
the experimentation was carried out using a proposed update of θ expressed in

∆w

70

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

(10), in such a way that it adapts to the data and it is not necessary to do the
tuning manually for each case:

θ = θ + α · (y − y′) · (w × x). (10)

The CNN shares some parameters of the Izhikevich neuron as the learning
rate α. This proposed model has layers of pooling, in total it has 3 of these,
one of max pooling (Equation 4, Section 2.1) with kernel of dimension N = 3.
The other two consist of layers of average pooling (Equation 5, Section 2.1), of
dimensions N = 4 and N = 2. The justification for this configuration is the
reduction of obtained characteristics, since this way a vector of 384 input values
for the Izhikevich neuron is achieved. When leaving the configuration without
pooling layers, a vector of 588, 800 input values is obtained, which can greatly
affect the behavior of the pulses. the whole of this proposed model can be seen
in Figure 2.

Fig. 2. Proposed model.

As shown in Figure 2, the proposed model is composed of two blocks given by
the Convolutional Neuronal Network and Izhikevich neuron. In the CNN block
it appears as input an image of size 66 × 200 with 3 channels (RGB). Layer 1
(C1) convolves the input image with 24 filters of size 5 × 5 obtaining 24 size
feature maps 62× 196 without reduction:

C1i,j = σ

(
2∑
d=0

4∑
m=0

4∑
n=0

wdm,n · xdi+m,j+n + b

)
. (11)

71

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

To make the output of the nonlinear linear operation, it is advisable that the
convolution output is passed through a Linear Units Rectifier (ReLU) σ(x) =
max(0, x). Layer 2 (C2) convolves previous maps with 36 filters of size 5 × 5,
obtaining 36 feature maps of 58 × 192. Layer 3 (C3), the convolution is carried
out using 48 filters of 5 × 5, obtaining 48 maps of 54 × 188. Data reduction is
done from layer 4 (P4) of Max Pooling (4) with filter size 3×3 getting the same
48 feature maps but with size 18× 62:

P4i,j = max

(
C3i,j C3i+1,j

C3i,j+1 C3i+1,j+1

)
. (12)

Layer 5 (C5) convolves through 64 filters of 3×3, obtaining 64 maps of 16×60.
In layer 6 (P6), the reduction is made through the filter Average Pooling (5) of
size 4× 4, obtaining 64 maps of 4× 15:

P6i,j =

N−1∑
m=0

N−1∑
n=0

C5i+m,j+n

N2
. (13)

Layer 7 (C7) convolves with 64 filters of 3×3, obtaining 64 maps of size 2×3.
Layer 8 (P8) reduces the size of the maps with a filter Average Pooling of 2× 2,
obtaining 64 maps of 1×6. Finally, layer 9 (F) crushes the maps obtained in P8
of size d ×m × n in a one-dimensional vector, F : P8d×m×n 7→ P81×(d×m×n).
Given the output of F , the CNN output vector consists of 384 values.

In the Izhikevich block, x represents the vector F . The x entry is processed
by the operations performed in the Algorithm 1, The output of the block consists
of the pulse train y′ ∈ [0, 100] given by the activation function (8), similar to a
multilayer perceptron in the discrete domain. The pulse trains are interpreted
as the discrete prediction obtained from the proposed model, to evaluate the
prediction a transformation processes are performed, which is detailed in Section
4.1. The synaptic weights w is a vector of the same length of the inputs x, through
the inner product and the control of a hyperparameter θ calculates the synaptic
energy of the neuron, it is accumulated during 1000 iterations generating a pulse
when it exceeds the threshold vpeak. The total of pulses obtained in the neuron
is recognized as the prediction, this serves to calculate the loss function which
is used for the adjustment of the weights w (9) and retropropagated to the
convolutional block.

The convolutional block is adjusted by the optimization algorithm Adam [11],
once the Izhikevich block obtains the error function, it is retropropagated to the
previous block to do the adjustment of the synaptic weights in the training
iteration i (14), where α is the learning rate, (mi) the exponential moving
average of the gradient (loss function), (vi) is the squared gradient and ε a
hyperparameter of the algorithm:

wi ← wi−1 −
αi ·mi

(
√
vi + ε)

. (14)

72

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

4 Experimental Setup

4.1 Data

As an experimental purpose, it was proposed to work with images captured in
the Udacity simulator, which is used for the development of autonomous vehicles.
The information provided by this simulator is a pattern of three images obtained
from simulated cameras mounted on the vehicle, directed towards the front of the
road, the three cameras remain perpendicular to the vehicle and are distributed
to the center and one in each respective position of the edges side of the car, these
images are shown in Figure 6. Each image has a resolution of 320 × 160 pixels
and is trimmed to remove 60 pixels containing the sky and 25 pixels containing
the front of the vehicle. Coupled with this pattern of three images, there are
as a class an angle of the steering wheel, which represents the expected action
depending on the shape of the road.

(a). Left camera. (b). Center camera. (c). Right camera.

Fig. 3. Images obtained from manual driving in the Udacity simulator.

It is worth mentioning that this angle of rotation of the steering wheel is
represented in radians and comprises in a closed interval of y = [−0.41, 0.41] so
there is a total of 83 classes if only two floats are considered, as shown in Figure 7.
A limitation is that this model has only a single classification node, so a problem
of 83 classes is an unfair challenge for a single neuron, and on the other hand
increasing the number of Izhikevich neurons would represent a computational
cost equal to or greater than the Multilayer Perceptron. Therefore, the Equation
(16) is proposed to perform the transformation of this angles to N classes. For
example in Figure 4b, the angles were divided into 3 intervals conformed by the
expressions mentioned in (12). In the same way it can observe the intervals of
10 classes in the Figure 9. This transformation allows experiments to evaluate
the performance of the proposed model as the complexity of the problem rises:

f(y) =
{
i if (ymin + |ymin−ymax|

classes i) ≤ y < (ymin + |ymin−ymax|
classes (i+ 1)), (15)

f(y) =

0 if y < −0.13,
1 if − 0.13 ≤ y < 0.13,
2 if 0.13 ≤ y.

(16)

73

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

(a). Original data with 83
classes.

(b). Transformed data to
3 classes.

(c). Transformed data to
10 classes.

Fig. 4. Steering wheel angle as class.

However, classification with the Izhikevich neuron returns only positive in-
tegers, which are defined as pulses. Therefore, the normalization of the data is
proposed using (17) to obtain values in the closed interval y′ = [0, 100], in order
to compare the output pulses with the real classes of the database:

y′ =
y − ymin

ymax − ymin
· 100. (17)

Now, if the angles (classes) of the database were scaled with (17) to be
represented as pulses, both these angles and the output pulses of the neuron
need to be rescaled to the interval y = [−0.41, 0.41] to be later interpreted.
To perform this scaling process, is used the inverse algebraic of (17), whose
expression is shown in (18):

y =
y′

100
· (ymax − ymin) + ymin. (18)

The driving database was created with a total of 11, 343 instances, which
contains a total of 34, 029 images. Although the three views are offered, in
this experiment it is not the case to predict the exact angle of rotation, for
which reason only the image captured by the central camera will be taken
into account. For the training parameters, different combinations were made to
evaluate the amount of data that can be classified correctly. These experiments
involve evaluating both models in training through 50, 100 and 200 epochs
to evaluate the learning behavior. The performance test is also carried out in
classification, evaluating the classification for 3, 5 and 10 classes, each experiment
with their respective validation set equivalent to 20% of the total training lot,
using only data that was not used for the training.

4.2 Evaluation

For this experimentation, two types of evaluation are required; The first type
is to measure the rate at the proposed model learns from training data and

74

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

backpropagation. To perform this measurement it is necessary to graph the
values obtained of the cost function through each training epoch. This cost
function is given by the Mean Squared Error expressed in (19), the metric obtains
the mean of prediction error taking the difference between the expected output
and the obtained output. As a support to this metric, it is also proposed to
evaluate with the metric of the Root Mean Square Error in (20), observing that
one of the classes is negative and the MSE may present variations:

MSE =
1

n

n∑
i=1

= (Y ′i − Yi)2, (19)

RMSE =

√√√√ 1

n

n∑
i=1

= (Y ′i − Yi)2. (20)

The second type of evaluation measures the quality of the prediction. There-
fore, it is proposed to use the metrics derived from the confusion matrix. The
main diagonal represents the true positives (TP), that is, the prediction hits.
However, to calculate false positives (FP) it is necessary to add the values of
the x column except the value belonging to the TP. For the calculation of false
negatives (FN) it is the same procedure but now with the sum of the row x. The
first metric derived from the confusion matrix is the recall expressed in (21), this
metric measures the percentage of patterns that were correctly classified among
all the patterns. The second metric is precision, this metric expressed in (22) is
similar to the previous one and measures the percentage of success for a single
class. Finally, the F measure metric is shown in (23). This method combines
precision and recall to obtain a balanced measure:

recall =
TP

TP + FN
, (21)

precision =
TP

TP + FP
, (22)

Fmeasure = 2 · precision · recall
precision+ recall

. (23)

5 Results

The implementation of this fusion was developed in the Python 3.4 language
using the Tensorflow 1.1.0 and Keras 2.2 libraries supported by CUDA 8.0 and
cuDNN 5.1 drivers for the CNN. The implementation of the Izhikevich neuron
was done in Python t0o without the support of the mentioned libraries. The
environment used for this experimentation consists of an Intel Core 17-7700
with 4 cores 8 threads 3.6 GHz, SSD storage 120 GB and a GPU Titan X, 3072
cores CUDA 1075 MHz 12 GB RAM. All under the Xubuntu 14.04 Trusty Thar
operating system.

75

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

In order to compare the experimentation of the proposed model, the deep
neural model Pilotnet [1,2] was evaluated. This model was designed to train with
the 83 classes mentioned in Section 4.1, but it was evaluated in the same way as
the proposed model.

5.1 Training Results

As mentioned in the Section 4.2, the experimentation was carried out under the
criteria of training and classification quality. For this first experiment, the MSE
and RMSE cost metrics were plotted to measure the rhythm of learning of the
proposed model. In short, the graph should show a slope that tends to 0, it
indicates that a better classification is being done in the validation stages after
a training period. In Figure 13 shows the comparison of the gradients obtained
in the training of 100 epochs.

(a). Training with 100 epochs and 5
classes.

(b). Training with 100 epochs and 3
classes.

Fig. 5. Mean Square Error and Mean Quadratic Error obtained during the
training of the proposed model.

The gradients obtained in the previous experiment are acceptable since they
trend to 0. However, by zooming in on the graph, an erratic behavior in the
rhythm of learning is appreciated. These variations depend to a large extent on
the dispersion and balance of the classes. Although the gradient is maintained or
grows, it remains in acceptable values to make a good classification. The erratic
behavior mentioned above can be seen in Figure 14, where a comparison is also
made with the gradient of the Pilotnet model.

Observing the graph of the gradient, a great difference can be seen between
the learning of both neuronal models. On the other hand, it is appreciated that
the proposed model reaches a minimum learning point in which despite adding
training epochs this does not improve the results. This observation does not
represent a disadvantage, this is an advantage to demonstrate that this neuronal

76

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

Fig. 6. Cost function in training with 100 epochs and 10 classes.

paradigm requires fewer training periods, however it is limited by capacity and
data. Now, the training time is clearly shorter in the proposed model. The time
that take to train in the experiments are shown in Figure 15.

Fig. 7. Time of training for both models.

The time graph shows a big difference in the time it takes to train both
models. This is due to the reduction of complexity with respect to the comparison
model. To better visualize the time obtained in the experiments, Table 2 is
shown, where the time is in seconds for each experiment.

77

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

Table 2. Time that took the experiments.

Model Training Time (sec)

Proposal 50 epochs 189.19
Pilotnet 50 epochs 5,925.55

Proposal 100 epochs 378.53
Pilotnet 100 epochs 11,954.79

Proposal 200 epochs 774.40
Pilotnet 200 epochs 23,719.89

5.2 Classification Results and Comparison

Given the reference, the experimentation was carried out equitably with 100
epochs of training for both models. This evaluation is done for 3, 5 and 10
classes with the intention of evaluating the maximum capacity of the Izhikevich
neuron for the classification. The results obtained are shown in Table 3.

Table 3. Results obtained for both models in classification with 100 epochs of
training.

Model
Metrics

Precision Recall F-Measure

Proposal 3 classes 0.991 0.983 0.987
Pilotnet 3 classes 0.999 0.994 0.996

Proposal 5 classes 0.855 0.845 0.849
Pilotnet 5 classes 0.991 0.966 0.966

Proposal 10 classes 0.740 0.741 0.740
Pilotnet 10 classes 0.911 0.897 0.903

Although the model that classifies through the multilayer perceptron presents
slightly results, this considerably increases the training time. The proposed
model requires much less time of the referent model, even though the perfor-
mance results in classification are very close in case of 3 classes. Although in
the case of increasing the number of classes reduce its classification capacity,
depending on the problem to be treated, it could be considered as a faster
option. Recalling that this generation of neural networks are in research for
new applications.

Another aspect to consider is that the Izhikevich neuron depends on a series
of constant values. Although for most of these constants there is a recommended
value, in the specific case of the threshold (θ) it is observed that for most of
the neuronal paradigms this parameter must be adjustable as the weights (w).
As a proposal to contribute to the development of this neuronal paradigm, an
update of the threshold is proposed given the function expressed in (10). It
is worth mentioning that the experimentation reported here was implemented
considering the aforementioned update and showing good results.

78

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

6 Conclusions and Future Improvements

As demonstrated in this research, one way to reduce the training time of a Neural
Network is to use an alternative to the Multilayer Perceptron Network commonly
used for classification. This simple but effective solution is able to reduce training
time considerably due to the remarkable decrease in neurons to be processed. As
presented in this article, the Izhikevich neuron is able to correctly classify the
patterns obtaining metrics very close to those of the reference model in a problem
of medium complexity with 3 classes. Although in the literature is reported that
this type of neuron turns out to be useful for binary nonlinear classification,
thanks to the adjustment of the Convolutional Neuronal Network it can improve
the results allowing classifying with more classes.

Although the experimentation shown here consists of not extensive training
sets with the full number of classes, the improvement of this proposed model
will be able to result in problems of classification in Big Data, which is planned
as a future work. Similarly, the dynamic adjustment of the parameters of the
Izhikevich neuron, such as the one shown in the Section 3.1 Equation (10), is an
aspect to be improved since it depends to a large extent on experiments prior,
and as is well known, a neural network is a non-parametric algorithm.

Acknowledgment. The authors express their gratitude to CONACYT, as well
as Tecnológico Nacional de México/CENIDET for the support given to the
department of computational sciences, in which it was possible to carry out this
investigation that is part of the project 5628.19-P so-called ”Sistema embebido
para asistencia de conducción basado en Lógica Difusa Tipo-2”.

References

1. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

2. Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L.,
Muller, U.: Explaining how a deep neural network trained with end-to-end learning
steers a car. arXiv preprint arXiv:1704.07911 (2017)

3. Demirkol, A.S., Ozoguz, S.: A low power vlsi implementation of the izhikevich neu-
ron model. In: 2011 IEEE 9th International New Circuits and systems conference.
pp. 169–172. IEEE (2011)

4. van Grinsven, M.J., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I.: Fast
convolutional neural network training using selective data sampling: Application
to hemorrhage detection in color fundus images. IEEE transactions on medical
imaging 35(5), 1273–1284 (2016)

5. Hernández-Becerra, M.M.L.: Clasificación de patrones mediante el uso de una red
neuronal pulsante. Congreso Mexicano de Inteligencia Artificial 5 (2016)

6. Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Mart́ınez, J.F., Bataller-Mompeán,
M., Francés-Vı́llora, J.V.: Simplified spiking neural network architecture and stdp
learning algorithm applied to image classification. EURASIP Journal on Image
and Video Processing 2015(1), 4 (2015)

79

Convolutional Model with Classification through Izhikevich Neuron

Research in Computing Science 148(10), 2019ISSN 1870-4069

7. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Keutzer, K.: Firecaffe: near-linear
acceleration of deep neural network training on compute clusters. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2592–2600
(2016)

8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on neural
networks 14(6), 1569–1572 (2003)

9. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE transac-
tions on neural networks 15(5), 1063–1070 (2004)

10. Jerry, M., Chen, P.Y., Zhang, J., Sharma, P., Ni, K., Yu, S., Datta, S.: Ferroelectric
fet analog synapse for acceleration of deep neural network training. In: 2017 IEEE
International Electron Devices Meeting (IEDM). pp. 6–2. IEEE (2017)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
13. Matsubara, T., Torikai, H., Hishiki, T.: A generalized rotate-and-fire digital spiking

neuron model and its on-fpga learning. IEEE Transactions on Circuits and Systems
II: Express Briefs 58(10), 677–681 (2011)

14. Pattanayak, S.: Pro Deep Learning with TensorFlow. Springer (2016)
15. Rice, K.L., Bhuiyan, M.A., Taha, T.M., Vutsinas, C.N., Smith, M.C.: Fpga

implementation of izhikevich spiking neural networks for character recognition.
In: 2009 International Conference on Reconfigurable Computing and FPGAs. pp.
451–456. IEEE (2009)

16. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolu-
tional architectures for object recognition. In: Artificial Neural Networks–ICANN
2010, pp. 92–101. Springer (2010)

17. Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks
using large learning rates. arXiv preprint arXiv:1708.07120 (2017)

18. Zhang, J.R., Zhang, J., Lok, T.M., Lyu, M.R.: A hybrid particle swarm
optimization–back-propagation algorithm for feedforward neural network training.
Applied mathematics and computation 185(2), 1026–1037 (2007)

80

Antonio Luna-Álvarez, Dante Mújica-Vargas, Manuel Mejía-Lavalle

Research in Computing Science 148(10), 2019 ISSN 1870-4069

