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Abstract. In this paper a methodology based on multi-objective particle swarm 

optimization algorithm, for identifying the optimal parameters for machining a 

workpiece with a milling is presented. The time for machining, the material 

removal rate, and the feed rate were identified as the objectives to optimize. In 

addition, the proposal considered 4 constraints related to cutting tools, rotating 

speed of main spindle, cutting depth per passing, and speed interval for advance. 

Once the objective functions and constraints were determined, the test workpiece 

was designed by an unexperienced machinist by means of CATIA software, and 

then exported to Mastercam X in order to generate the G & M codes. The material 

selected for machining was delrin. In the experimentation stage, the methodology 

proposed was executed 50 times, and the parameters from the 2 best solutions 

were used to design 2 new workpieces. From the results obtained it was observed 

that the methodology proposed can support unexperienced operators in 

optimizing the parameters for machining. The machining time was reduced in 

30%, material removal rate was increased about 55%, and an increment of 14% 

was obtained for the feed rate. 

1 Introduction 

Manufacturing is the process of converting, by hand or by machine, raw materials, 

components, or parts into finished goods that meet a customer's specifications. It 

implies, the application of physical and chemical processes to alter the geometry, 

properties, and appearance of a given starting material to make parts or products [1]. 

Manufacturing operations can be broadly classified into two different groups called 

processing, and assembly. The former, transforms a work material to the final desired 

product. The later, joins two or more components to create a new entity called an 

assembly or subassembly. 

An important task inside processing operations is the material removal or well 

known as machining. Machining is the manufacturing process in which a cutting tool 

is used to remove the material excess from a workpiece, in such a way that the reminder 

obtains a desired shape. The machining process can be divided into two groups which 
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are: a) cutting process with traditional machining in which turning, milling, boring, and 

grinding are included, and b) cutting process with modern machining in which electrical 

discharge machining (EDM), and abrasive waterjet (AWJ) are included [2]. 

Typically, when a workpiece will be machined, a process planer selects the 

machining parameters based on his experience, and from the available handbooks. In 

the literature, a number of recommended machining parameters can be found, however, 

most of times those parameters do not suits exactly for a particular machine tool, 

material, and other combinations [3]. The poor selection of machining parameters leads 

to several drawbacks such as long machining times, and large waste of materials, 

therefore, it is imperative to enhance the parameters involved in workpiece machining. 

One of the main goals in machining is to produce high quality products with less cost 

and time constraints, and this can be due by optimizing the selection of process 

parameters such as cutting speed, depth of cut, feed rate, to mention a few. In several 

fields such as computer science, artificial intelligence, operation research, and 

manufacturing, optimization is the process of trying to find the best possible solution 

to a problem [4]. 

Several traditional and non-traditional methods can be used for determining the 

optimal machining parameters. Traditional techniques include dynamic programming, 

geometric programming, and deterministic techniques. However, these techniques 

either tend to result in local minima or take a long time to converge to an acceptable 

result [5]. On the other hand, non-traditional techniques include genetic algorithm 

(GA), simulated annealing (SA) [6], particle swarm optimization (PSO) [7], ant colony 

optimization (ACO) [8], and artificial bee colony (ABC) [9]. 

In the literature a number of single objective approaches have been presented for 

optimization of machining parameters such as material removal rate (MRR), surface 

roughness, cutting force, tool life, power consumption, to mention a few. However, 

several single objective problems must be applied to optimize the number of different 

criterions involved in machining processes. On the other hand, multi-objective 

approaches can be used to optimize several criterions at a time. In multi-objective 

optimization problems, the objectives to optimize are normally in conflict with respect 

to each other, therefore, there is no single solution to these problems. Hence, good 

trade-off solutions that represent the best possible compromises among objectives is 

frequently obtained. The trade-off solutions are called Pareto optimal set [10]. 

A reduced number of works, can be found in the literature regard multi-objective 

optimization of machining parameters. The paper of [11], considers the environmental 

dimension for optimizing milling cutting operations; three objectives, such as surface 

roughness, MRR, and cutting energy, were simultaneously optimized. A multi-

objective optimization of lathe machining parameters for energy saving was shown in 

the work of [12], where three objectives including energy, cost, and quality were 

considered, which were affected by 3 constraints, namely cutting depth, feed rate, and 

cutting speed. A software prototype for solving multi-objective machining optimization 

problems was developed in [13]; the core was an algorithm based on exhaustive 

iterative search which guarantees the optimality of a determined solution in a given 

discrete search space, a wire electric discharge machining (WEDM), a micro WEDM, 

and a laser machining were considered for tests. The problem of computing the Pareto 

front was addressed in the paper of [14], by enumerating and characterizing 128 

scenarios in sustainable machining operation involving 7 objectives including energy, 
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cost, time, power, cutting force, tool life and surface finish; several recommendations 

were offered to create a generic optimization framework. Finally, a method for complex 

optimization of cutting parameters with the objectives of energy efficiency and milling 

processing time, which integrates Taguchi method, response surface method (RSM), 

and multi-objective particle swarm optimization algorithm (MOPSO) was presented in 

[7]. 

Motivated from the revision above, and by observing that multi-objective methods 

have gained great attention, in this paper a method for multi-objective optimization of 

objective functions related to machining time, MRR, and feed rate for a milling 

machine is presented. The proposal considered 4 constraints related to rotating speed 

of main spindle, cutting depth per passing, speed interval for the advance, and cutting 

tools. Therefore, the primary focus of this paper is to suggest procedures to determine 

the optimal machining parameters for single-pass milling of a workpiece. 

2 Proposed Methodology 

The methodology proposed comprises two main stages; the first one, related to 

machining the workpiece, and the second one, related to MOPSO. 

2.1 Machining the Workpiece 

The first step in the methodology proposed, consists of machining a test workpiece with 

a specific geometry, by means of a computerized numerical control (CNC) machine. 

The milling selected was the vertical VIWA VF3KM400, which have a 5 horsepower 

(HP) triphasic motor, table dimensions of 1270 x 254mm, spindle career of 120mm, 

and variable speed range from 120-4200 revolutions per minute (rpm). A graphical 

example of the milling used is shown in Figure 1. 

 

 

Fig. 1. The milling machine used for piece machining. 

The material selected to build the workpiece was Polyoxymethylene (POM), better 

known as delrin, which was prepared by means of cutting, and carious operations. The 

cutting process started from a solid delrin block with a size of 65mm x 65mm x 

50.8mm. The workpiece was made up of a cylinder placed at the center, with a diameter 

and a height of 30mm. The cylinder contains a hole of 12.5mm x 12.5mm with a depth 
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of 15mm. In addition, 4 holes were created in the corners of the piece, with a diameter 

and depth of 10mm. 

The workpiece was designed by an unexperienced user by means of the computer 

aided three-dimensional interactive application (CATIA) software. The piece designed 

in CATIA was exported to Mastercam X in order to define the methodology, the tools, 

and the necessary parameters to perform the machining in a virtual way. The goal of 

this was to verify the existence of possible errors before the real workpiece machining. 

The workpiece designed in CATIA, and its correspondent representation in Mastercam 

X are shown in Figure 2. 

 

 
a) 

 
b) 

Fig. 2. The workpiece designed in: a) CATIA, and b) Mastercam X. 

Once that the correct design of the piece was virtually verified, the G and M codes 

were created, and used to control and drives the milling. The parameters used for the 

initial workpiece machining were set to: depth from 1.5 to 3mm, cutters with 2 and 4 

teeth, with a size of 1/8 and 1/4 respectively, and 0.073 millimeters per tooth mmPT, 
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and rotating speed of main spindle of 3000 rpm. The final workpiece designed is shown 

in Figure 3. 

 

Fig. 3. The final workpiece designed. 

2.2 Multi-Objective Particle Swarm Optimization  

The metaheuristic used to solve the multi-objective optimization problem of this paper 

is known as PSO, that simulates the movements of a flock of birds which aim to find 

food. The main advantages of PSO includes better exploration and exploitation 

provided by local and global search capabilities of the algorithm.  

According to [15], PSO starts with the random initialization of a population (swarm) 

of individuals (particles) in the n-dimensional search space (n is the dimension of 

problem). The particles fly over search space with adjusted velocities. Each particle 

keeps two values in its memory; its own best experience, and the best experience of the 

whole swarm.  

 

2.2.1 Definition of the Objective Functions. Three different objective functions were 

defined in order to optimize the time for machining a piece (TM), the MRR, and the 

feed rate (f). It is important to mention that the three functions were merged in a sum 

function. 

The function related to TM expressed in min is shown in equation 1: 





T

n

ntTM
1

.  (1) 

The function of MRR expressed in cm3/min is shown in equation 2: 

,MR n mmPT W A Z      (2) 

where n is the rotating speed of spindle measured in rpm, mmPT are the millimeters per 

tooth of the cutting tool, W is the radial width of cut, A is the axial depth of cut, and Z 

is the number of cutting tool teeth. 

The third objective function corresponds to f, and it is expressed in mm/min as shown 

in equation 3: 

.ZmmPTnf   (3) 
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2.2.2 Constraints. The constraints defined for the proposed model were the following:  

 

1. The rotating speed of main spindle must rank in an interval of 2500-4000 rpm, 

because it represents the middle to high rank of the milling machine. 

2. The cutting depth per passing was defined in 1-4mm. 

3. The speed interval for the advance was defined as 20-40 IPM. 

4. Only high speed steel (HSS) cutting tools of 2 and 4 teeth were used, and the 

search space was limited to 1/16-5/16. 

 

2.2.3 PSO Parameters. The parameters employed for the PSO algorithm were: 

 

 The initial swarm was set to 10 particles. 

 The maximum number of iterations was set to 50. 

 The maximum and minimal speed [-Vmax, Vmax] interval was set to [-5, 5]. 

 The inertia factor decrement was realized with a maximum value of 1.4, and a 

minimal value of 0.4. 

 The learning factors values of c1 and c2 were set to 1.49618. 

3 Experimental Results 

The initial parameters for machining the workpiece were inserted as inputs to PSO, and 

then the proposed algorithm was executed. Once that the stop criterion was met, an 

array containing the better solutions is delivered as an output. 

For the experimentation, the two best solutions from the set obtained were selected, 

after that, by using the optimized parameters two new pieces were machined. The 

parameters obtained for the best solution (MOPSO1) were cutting depth of 3.5mm, 

cutting tool with a size of 1/4, 4 teeth, and 0.0656 mmPT, and rotating speed of 3388 

rpm. For the second better solution (MOPSO2), the parameters obtained were cutting 

depth of 4mm, cutting tool with a size of 1/4, 4 teeth, and 0.0810 mmPT, and rotating 

speed of 3266 rpm. A summary of the values obtained from experimentation is shown 

in Table 1. In addition, the percentage improvements are shown in Table 2. 

Table 1. Results obtained from experiments 

Piece TM MRR f 

Original 18.03 min 12.554 mm/min 779.44 cm3/min 

MOPSO1 12.23 min 19.758 mm/min 889.01 cm3/min 

MOPSO2   12.47 min 18.709 mm/min 736.80 cm3/min   

Table 2. Improvement percentages from experiments 

Piece TM MRR f 

Original - - - 

MOPSO1 32.06% 57.38% 14.06% 

MOPSO2 30.84% 49.03% -5.47% 
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3.1 Discussion 

It should be noted from Tables 2 and 3 that the methodology proposed for machining a 

workpiece with optimized parameters offers competitive results. The TM was reduced 

in both solutions in 6 min (from 18 to 12), which represent a competitive percentage 

reduction of about 30%. The time reduction is mainly due to the increase of MRR, the 

faster the better for most machinist, therefore, the industry could deliver mores pieces 

by turn, and generate more economic gains. 

The MRR was enhanced in 6 mm/min, which represent an approximate gain of 56%. 

From the experiments it was observed that even with the increase of MRR the cutting 

tool life is not affected (due to the material used), no chipping was presented, and a 

good surface finish is obtained. In addition, it is important to note that for the case of 

MOPSO1, f was enhanced from 779.44 cm3/min to 889.01 cm3/min, which represent a 

gain of 14.06%. However, as can be observed for the case of MOPSO2 no f 

improvement was obtained, unlike a decrement of 11 cm3/min was obtained, even with 

this the other parameters influencing for good machining. In comparison with the 

literature works discussed in Section 1, the geometry of the workpiece machined in this 

paper is not trivial, therefore, the selection of the parameter by an unexperienced and 

even an experience machinist is complex. After the machining of the two workpieces 

with the parameters obtained with the methodology proposed, it was observed that its 

quality was good in terms of geometry, and surface finish. 

4 Conclusions 

In this paper a methodology based on multi-objective particle swarm optimization 

algorithm, for identifying the optimal parameters for machining a workpiece with a 

milling was presented. The results obtained from experiment proved that the optimized 

machining parameters of PSO could yield to improve the machining time, the MRR, 

and the feed rate for a particular geometry of a workpiece, and obtaining a good surface 

finish. The optimization results obtained in this paper confirm that the proposed 

optimization method is a very useful tool for multi-objective optimization of machining 

parameters. In addition, the proposed methodology can solve the trade-offs well when 

objectives were generally conflicting to each other, and constraints must be fulfilled. 

Future work will be directed towards on extending the current approach to include 

more different and complex workpiece geometries. Also, it will be important extend 

the proposal to a wider of optimization of machining parameters. Regards to the 

material, it will be interesting perform tests with other material such as aluminum, cast 

iron, graphite stainless steel, among others. Finally, the model could be extended with 

objective functions related to cutting tool life, and surface roughness. 
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