ISSN 1870-4069

Vector Theory for the Scattering of TM-polarized
Hermite-Gaussian Electromagnetic Beams
by a Double Metallic Slit

R. Salazar-Hernandez, G. Montiel-Gonzaélez, J. Mulia-Rodriguez,
J. Sumaya-Martinez

Facultad de Ciencias, Universidad Auténoma del Estado de Mexico, Toluca, Mexico

jsm@uaemex.mx

Abstract. We present a rigorous theory for oblique incident Hermite-Gaussian
beams, diffracted by two slits of width ¢ and separation d, in a thick metallic
screen for the case of polarization TM(S). The far field spectra as a function of
several opto-geometrical parameters, wavelength A, slit width ¢, separation d,
incidence angle 6; and Hermite order m is analyzed. In the vectorial diffraction
region given when A/¢ >0.2, where ¢ is the incident wavelength and as a
function of the separation between slits d; we have numerically analyzed: the
far field spectra, the energy diffracted along the incident beam direction (E;),

and the validity of an approximate diffraction (scalar) property, namely E; =
Nt/A.
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1 Introduction

Currently there are several rigorous theories of diffraction by plane electromagnetic
waves (Enriquez et al., 2011) and Gaussian beams (Mata et al, 1993); (Mata et
al, 1994) by two slits in metallic screens of zero thickness. However these theories do
not treat with Hermite-Gauss or oblique incidence, nor thick screens of nonzero
thickness (Mata et al, 2008).

In this paper we present a novel rigorous theory of diffraction that allows to
consider the illumination by Hermite-Gaussian beams at oblique incidence on two
slits of width ¢ and separation d in screens with infinite conductivity and thickness h.

In particular, we analyze the coupling between slits through the numerical study of
the diffracted energy along the direction of the incident (E;) beam energy as
a function of the parameter of separation d between the slits. It is revealed the
existence of oscillations in the energy E; . We also show that in the case of TM(S)
polarization, the energy E; is special because when compared to other diffraction
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patterns. Finally, we show that the scalar property valid at the scalar region (A¢ <0.2)
E; = Nt/A (Alvarez-Cabanillas, 1995) is not longer valid.

2 A Vector Theory of Diffraction

In Fig.1 we have two slits on a screen of infinite conductivity, and non-zero thickness
denoted by h. In this screen you have two parallel to the Oz axis, ¢ wide and spaced
slits d. The display is in the gap and impinges perpendicularly on it a Hermite-
Gaussian beam with wavelength 2 = 2rt/k and order m. We will use the complex
representation for the fields and omit the time factor going forward e=*¢. H is the
magnetic field when you have the TM (magnetic field parallel to the
axis Oz) polarization. The H field satisfies the Helmholtz equation (Mata et al, 1994)

92 H/ 8x% + 82H/ dy? + k2H = 0. 1)

Denote by H; the solution of Eq (1) in the region | (y > h/ 2), expressed by a
plane wave expansion:

k k
1 . 1 .
H(xy) = — fA(a) el( =BV dq + — f B(a) el *+BY)da. 2
V2T “ V2T “

The first integral is identified with the incident beam due to the sign of the a and
B k-components.

In region |1, within the screen, —h/2 <y < h/2 the electromagnetic field will be
represented by the following modal series:

Y

Region 1

Regiéon 111

E(0=0)

Fig. 1. Our system. Two slits of width /and spacing din an infinitely thick conducting

screen h. The energy diffracted along the incident direction (E;) is diffracted in the direction of
O(relative to the axis Oy) = 6; (From the axis OXx).
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Hi(y) = ) aboh(xy) + ) a2 Gx,y), )
n=0

n=0

where in i = 1,2 the set @} (x), are functions whose normal derivative is zero at the
walls for the TM polarization.

The diffracted field below the screen, fory < —h /2 (region IllI), could be
expressed as a plane wave expansion too:

Hy(x,y) = C(a) el @+ dq. (4)

|
21 K

Our goal is to determine the transmitted field (Eq. (4)), for which one needs to
determine C (). Note that C (a) depends on the coefficients al and a? and the
incident amplitude A(«). For this, we use the appropriate conditions of continuity,
which could be obtained from Maxwell's equations (Alvarez-Cabanillas, 1995). These
conditions lead us to the following matrix system, in which the matrix columns a,
and a, are formed respectively by the coefficient al and a2.

My a, + Miza, = Sy,

(%)
M31a1 + Mpa; = Sy,
where M;, (i,k = 1,2) are square matrices dependent on the opto-geometrical
parameters and S; (i = 1,2) are matrices depending only on A (a). The
determination of the modal coefficients al, and a?2. allow us to calculate the diffracted
field in any region for TM polarization.

3 Results and Discussion

Using the complex Poynting vector is possible to obtain the diffracted intensity at the
angle 0. For a Hermite-Gaussian beam, the spectral amplitude is (Mata et al, 2008):

Ala) = %imHm [—2(0{ sin ©; — B cos 61)] X [sin 0; + (%) cos Oi] e(-iab) x ©)
e[—(asinei—Bcosei)sz/B]7

where H,,, is the Hermite polynomial of order m. The position of the beam waist is
given by the parameter b (see Fig. 1).

In the figures relating to energy diffracted along the direction of the incident
beamis E;(6 = 6;) the diffracted angle in the direction of the incident beam,
measured from the axisOxand 6;is the angle of incident beams to the
axis Oy measured. The energy, the diffracted intensity 1(6) and the transmission
coefficient t are normalized to the total incident energy I,. All parameters normalized

opto-geometrical width lof the slots ¢, thatis, , /= 1.

In Figs. 2 and 3 show the diffraction patterns of Hermite-Gaussian beams for the
fundamental mode m = 0 at normal incidence and oblique incidence of 30 °; the
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wavelength of the incident beams is 4/¢=0.9, with extremely wide Gaussian beams
L/¢=500/+/2 and fixed at the position b/¢=0.5, the thickness of the screen is h/¢
=1and the gaps between slits are d/¢=0, 1, 3.5 and 5.

The shape of the diffraction patterns for the m = 2 mode, not shown, is identical to
the spectra of FIGS. 2 and 3 (with the same opto-geometrical parameters) except for a
scaling factor which provides a lower intensity for this mode, from the respective
Hermite polynomial.

From these diffraction patterns we have taken the diffracted energy E; along the
direction of the incident beams. Figs. 4 and 5 show the behavior of the E; separation
according to d for m = 0 and 2 modes; opto-geometrical parameters of these figures
are the same in Fig. 2 and 3.
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Fig. 2. Diffraction patterns normalized (I(6)/1,) of Hermite-Gaussian beams of m =0
normally incident on two slits so. With A/¢ = 0.9, L/¢=500/v/2, h/¢ =1 and position b/¢=0.5 and

for separations d/¢ =0, 1, 3.5 and 5.

The curves of FIGS. 4 and 5 show the oscillatory behaviors as E; a function of the
spacing d, in particular for the period is normal incidence to oblique incidence A and
the period is 2).
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Fig. 3. Standard diffraction patterns (1(6)/1,) Hermite-Gaussian beam for m =0 to 30°
obliquely incident on two slits so. Same parameters of Fig.2.

In Fig. 5 has also been drawn in broken lines the 21/A function. As you can see, this
function does not overlap with the energy with E; which we can say that the property
of diffraction E; =2t/A is not valid in the vector region at least for the separation
parameter d and doing extremely wide.

Finally, in Fig. 6 different diffracted energy around the energy is E;. The upper
curves of Figure 6 correspond to normal incidence for the m = 2 mode, with the same
parameters of Fig. 3; diffracted energies correspond to the angles diffracted 6 =
90°,91°,92° and 94°. The curves in the lower window of Fig. 6 correspond to
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oblique incidence of 30°, also for mode m = 2, with the same parameters of Fig. 4.
The diffracted energies shown, corresponding to angles diffracted around of 8 = 60
° (corresponding to the diffracted energy along the oblique incidence angle 6; =
30 °) and for the angles 58 °,57 ° and 64 °.
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Fig. 4. Energy diffracted in the direction normal to the standard E; to Hermite-Gauss beam,

depending on the spacing d/¢ screen. For the fundamental mode m = 0, at normal incidence

and oblique incidence of 30°, with 4/¢=0.9, L/¢=500/~/2, h/¢ =1, y b/¢=0.5.
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Fig. 5. Energy diffracted in the direction normal to the E; (solid line) Hermite-Gauss beam,

thus m = 2 and 27/A property (dashed line), in function of the spacing d// Same parameters
of Fig. 3.

Energy analyzing energy diffracted E; around for m = 0 at normal incidence and
obligue incidence of 30 ° as also carried out (data not shown) found similar patterns
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for mode m = 2 (see Fig. 6), the energy diffracted around the energy as E; a function
of the spacing d, decay to zero.
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Fig. 6. Energy diffracted around energy E; (6 = 6i) Hermite-Gauss beam, for the m = 2 mode
according to the distance between slits d/Z Same parameters of Fig. 4.

4 Conclusions

Present a more rigorous theory of diffraction for the oblique incidence beam Hermite-
Gaussian (HG) on a screen of thickness h with wide slits separating slits  and d. In

the case of TM(S) polarization and wavelengths in the vector region /—1/ > 0.2, we have

found that the diffracted along the direction of the incident beam energy has
oscillations period A as a function of the spacing d for modes m = 0 and 2, for the
period 21 at 30 ° oblique incidence. Finally, we note that the energy E; has special
characteristics compared diffracted energies in other directions and found numerically
that ownership of scalar diffraction (1/¢ < 0.2) given by E; = 2t/A is no longer
valid in this region (1/¢ > 0.2).
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