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Abstract. Entanglement of quantum systems is a key aspect to understanding 

the dynamics and behavior of mixed systems (density matrix) as bipartite 

quantum bits (qubits). Thus we need to have a reliable and accurate way to 

measure the entanglement degree of the system, i.e., how it evolves, so that 

raises several approaches to meet these demands. A quantifiable measure 

widely used is the "entanglement of formation" of a mixed state, defined as the 

minimum number required of "singlets" to create a set of pure states that 

represents the density matrix of the system. In this paper we consider a system 

of two semiconductor quantum dots embedded in its own cavity and coupled to 

the internal mode field of cavity type Jaynes-Cummings. The entanglement 

between the two quantum dots is investigated, and we show analytically that 

entanglement has very interesting, effects such as time evolution including the 

effect called sudden death. 

Keywords: entanglement, quantum dots, semiconductors, sudden death. 

1 Introduction 

By several years, many authors have studied entanglement because their enormous 

importance at a fundamental level and because its applications to quantum 

information and quantum computing (Nielsen and Chuang, 2000). Entanglement has 

marked a new way to reinterpret the quantum nature of computer technology due to 

the incorporation of quantum processing units with so-called quantum bits (q-bits), 

represented as dual units that open up infinite possibilities of parallel processing, at 

least theoretically, much faster than any classical computational process. 

However this has been the case at the theoretical level, therefore it is essential to 

implement physical models that allow the incorporation of this development into 
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feasible systems or where the technological inertia may lead to, and one of the most 

visible are Quantum Dots (QDs). In spite that we usually refer to QDs as Atom like 

structures, there are substantial differences such as the exchange interaction (Förster 

interaction), (Sanchez-Mondragon, Alejo-Molina, S. Sanchez-Sanchez, 2005 & 

2009) which has been used as the basis for proposals of quantum computation, and 

therefore deserve a careful analysis. 

Quantum entanglement has played very important roles in quantum information 

processing such as quantum teleportation (Nielsen and Chuang, 2000) quantum 

cryptographic, quantum dense coding (Bennett, Wiesner, 1992) and parallel 

computing (DiVincenzo, 1995). Therefore a precise measurement is needed to 

quantify the degree of entanglement for those qubits system in collaboration or 

competition with such exchange interaction. This is more interesting because the 

physical character and mathematical structure of entangled states have not been 

well understood and the Förster interaction tuning opens new possibilities to deal 

with its fundamental questions. There are two important problems for entanglement.  

One is to find a method to determine whether a given state is separable (or not 

entangled), and the other one, it is to define the best measurement quantifying an 

amount of entanglement of a given state. In order to solve the first problem, much 

effort has been made, [6-8]. The quest for proper measurement of entanglement has 

received also a great deal of attention. The entanglement of formation, distillation, 

and relative entropy, (Bennett, DiVincenzo, Smolin, Wootters, 1996) negativity, 

concurrence (Hill, Wootters, 1997; Wootters, 1998) concurrence related measures, 

or positive operator are used to investigate entanglement.  

Although the entanglement of formation is defined for arbitrary-dimensional 

bipartite systems, so far no explicit analytic formulates for entanglement of 

formation have been found for systems larger than a pair of qubits, except for  some 

special symmetric states (Terhal, Gerd, Vollbrecht, 2000). 

Another serious problem that must be considered in entanglement, as mentioned 

earlier, in a quantum system is it may deteriorate due to interaction with 

background noise or with other systems usually called environments. Interest was 

originally concerned with the consequences for quantum measurement and the 

quantum-classical transition (Joos, Zeh, et. al. 2003). More recently, entanglement 

decoherence has been studied in connection with obstacles to realize various 

quantum information processing schemes. T. Yu and Eberly have shown that 

entanglement can decay to zero abruptly, in a finite time, a phenomenon termed 

entanglement sudden death (Yu and Eberly, 2004; Yu and Eberly, 2006).  

Such quantum correlations are responsible for much of the challenge in 

understanding interacting many-body quantum systems, and it is therefore of 

fundamental importance to have quantitative knowledge of these correlations. 

Progress in quantum information theory has led to the development of new 

measures of the inseparability of a quantum state, and in the last few years these 

measures have been used to assess the quantum correlations in diverse physical 

systems. Concurrence is an especially useful metric for such studies because it can 

be applied to mixed as well as pure states. It therefore can be used to quantify the 

thermal entanglement in a system at nonzero temperature. It can also be applied to 

evaluate the inseparabililty of an equal incoherent mixture of degenerate energy 
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eigenstates. However as we mentioned above, concurrence is defined only for a pair 

of qubits. Since a qubit is formally equivalent to a spin-1/2 particle when only the 

spin degree of freedom of the latter is considered, this has led to several analyses of 

the thermal entanglement between a pair of interacting spin-1/2 particles. 

Entanglement of formation, is another important entanglement measure, which can 

be calculated directly from the concurrence and is monotonically related to it. The 

method of calculating the concurrence for more general density matrices can be 

found in Wootters. 

The importance of this issue is to find necessary and sufficient conditions for the 

development of quantum computer systems in their physical implementation 

(hardware) and the new rules of quantum processing (software). In our case we 

focus on studying the physical implementation on a fundamental level, seeking the 

most appropriate quantum physical system of many systems studied in quantum 

physics for many decades to more sophisticated atomic systems with cooperative 

and collective effects. Up until now, such quantum-mechanical computers have 

been proposed in terms of trapped ions and atoms, cavity quantum electrodynamics 

(QED), nuclear magnetic resonance, Josephson junctions, and semiconductor 

nanostructures schemes. However all of the above proposals have decoherence and 

operational errors as the main obstacles for their experimental realization, which 

pose much stronger problems here than in classical computers. There is much 

current excitement about the possibility of using solid-state-based devices for the 

reliable rendering of quantum computation tasks.  

In particular, semiconductor nanostructure fabrication technology is well 

developed and hence offers us a wide and promising arena for the challenging 

project of building quantum information processors. Because of their quantum-

mechanical nature and their potential scalability properties, semiconductor quantum 

dots (QDs) are very promising candidates for the implementation of quantum 

computing processes. Several solid-state design schemes for quantum computation 

have been proposed to date: Kane (B.E. Kane, 1998) has proposed a scheme that 

encodes information onto the nuclear spins of donor atoms in doped silicon 

electronic devices where externally applied electric fields are used to perform 

logical operations on individual spins. Loss and Di-Vincenzo have presented a 

scheme based on electron spin effects, in which coupled quantum dots are used as a 

quantum gate. This scheme is based on the fact that the electron spins on the dots 

have an exchange interaction (Forster interaction) which changes sign with 

increasing external magnetic field. 

In this paper we consider a double quantum dot system coupled to the mode 

Jaynes-Cummings cavity type, thus we investigate the entanglement between two 

quantum dots, each embedded in his own cavity, and we show analytically that 

entanglement has interesting effects such as temporal evolution, as well as the so-

called sudden death effect. The system composed of two quantum dots were 

previously entangled before that these were immersed into the cavity. We study this 

system in the context of cavity quantum electrodynamics (C-QED). However we 

must to clarify that this is not a paper on QDs systems for quantum computing 

applications. It's just a proposal about semiconductors QDs in quantum optics and 

C-QED fundamentals, which we used to do the theoretical study, also supported by 
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the entanglement of formation procedure as a quantitative measure for the 

entanglement between our qubits: i.e. the two quantum dots system more the 

cavities. 

2 Concurrence and Entanglement of Formation 

Entanglement is a fundamental insight of quantum mechanics, which corresponds to 

the presence of nonlocal correlations between different parts of a system that cannot 

be explained classically. That is, a pure state of a pair of quantum systems 

(bipartite) is called entangled if it is not factorizable (i.e., if the state total cannot be 

written as a product of states of the particle) and a mixed state is entangled if it can 

be represented as the mixed state pure factorizable. For both pure and mixed 

quantum states, there are good measures of the degree of entanglement. In the case 

of pure states of a bipartite system there is a single widely accepted measure of 

entanglement, whereas for mixed states of such systems there are three measures 

that have been extensively studied. One of these, entanglement of formation, is a 

subject of this paper. We use the concurrence of Woosters as a measure in this 

work, mainly for its importance for mixed states and the convenience of its 

definition and normalization. 

2.2 Entanglement of Formation for a System of Two QDs 

The key element in the quantum information processing is the so-called quantum bit. 

For this reason, understanding their behavior in quantum computing environments is 

essential to carry out external operations that perform specific calculations in 

locations on qubits by logic operations with new algorithms adapted to these qubits. 

So we should form networks of qubits at different intervals making full operations. In 

our case we have a small network of two QDs at the nodes of network under this 

study we will provide the means to insight the transfer at a distance of entanglement 

in the lattice network.   

Our qubits are a system of two quantum dots which are located in their respective 

single-mode (
†,  a a  and 

†,  b b ), lossless cavities so that a cavity includes only one 

such dots. Thus, each node of our network consists of a cavity in which there is a QD. 

We will restrict our attention to the dynamics of entanglement between two such 

nodes. We will denote the dot at the first node by A, cavity at the first node by a, dot 

at the second node by B and cavity at the second node by b, as sketched in Fig. 1. We 

are going to be using the QDs Hamiltonian model (Sánchez-Sánchez, 2011).  

Quiroga-Jhonson 1999; Reina-Quiroga-Jhonson ) to specify the interactions in our 

system, this include the Förster interaction. The QDs Hamiltonians (defined the 

constant 1 ) as we will use in next sections, i.e. equations (1), (2) and (3). We 

consider L identical semiconductor quantum dots that are equally coupled to each 

other via coulombic interaction. The QDs interact with a quantized field (dipole 

interaction) in a high-Q cavity. Then the coupled QD-field system is described by the 

Hamiltonian (Sanchez-Mondragon, Alejo-Molina, S. Sanchez-Sanchez, 2005 & 2009. 

Quiroga and Johnson 1999). 
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Fig. 1. This diagram show our system of two QDs previously entangled. The QDs are placed in 

their respective cavity, which there are not interaction between them. 

With respect to two subsystems A and B 

    
    

2
( ) † † 2

2
( ) † † 2

,

,

A a a a a

z a a a z

B b b b b

z b b b z

H a a J g J a a J W J J

H b b J g J b b J W J J

 

 

 

 

     

     

 
(1) 

where is the QD band gap, a bg g g   is the coupling strength between the 

field and the QDs,   is the field frequency, and Wa=Wb=W, represents the interdot 

coulomb interaction. 

The coulomb interaction process known as Forster process exchanges energy, but 

does not require the physical transfer of the electrons and holes. For equal coupling 

these QDs are equidistant from each other so that the dots lie on a line for cases L = 2, 

at the vertices of an equilateral triangle for L = 3, and at the vertices of a regular 

pyramid for L = 4. The Hamiltonian (1) can be rewritten in a much more suitable in 

the representation of angular momentum, with the changes point out into references: 

(Sanchez-Sanchez S. 2011; Sanchez-Mondragon, Alejo-Molina, Sanchez-Sanchez S., 

2005 & 2009. Quiroga and Johnson 1999), we obtained that may consist of two parts, 

first one with the Dicke DkH  Hamiltonian itself and the other one is the interaction 

Hamiltonian Förster FH , defined as  
.

, , † ,

A B

a b a b a b

Dk zH J g J a a J     and 

2 , 2 , ,

,( ( ) )a b a b a b

F a b zH W J J WJ J     where the constant =    is the detuning 

between the electromagnetic field and the band-gap.  

The Hamiltonian of L QDs can be rewritten in the form:   ,LH N Q   with 

† / 2zN a a J L    is the number of atoms and photons and 
L Dk FQ H H   are 

constants of motion. It should be noted that the term of Förster , ,a b a bWJ J 
 is non-

linear. Furthermore we introduced a new constants ' , defined as '= W   . 

However there is another way to rewrite the Hamiltonian (1), using the relations of 
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the algebra of angular momentum, thus we rewrite the Hamiltonian to include 

explicitly the detuning   which now call Förster Detuning ' , so we obtain: 

   

   

( ) † †

( ) † †

' ,

' ,   

A a a a a a a

z z

B b b b b b b

z z

H a a J g J a a J J WJ J

H b b J g J b b J J WJ J





   

   

     

     

, (2) 

while the parameters are defined as: '= +W= 'W         . In a frame 

rotating with the field frequency , Eq. (2) takes the form: 

 

 

( ) †

( ) †

' ,

' .

A a a a a a

F z

B b b b b b

F z

H J g J a a J WJ J

H J g J b b J WJ J

   

   

    

    

. (3) 

3 Two QDs Interacting with their Own Quantized Cavity Field: 

Hamiltonian Diagonalization 

From now on we will use this Hamiltonian (3), for each of the subsystems in order to 

diagonalizar the Hamiltonian, i.e. splits into two subsystems which are represented as
( ) ( )A B

TH H H  . This will simplify the task of studying the time evolution of the 

QD-field system. Starting with the initial condition representing the vacuum of 

excitons (S. Sánchez-Sánchez, 2011) (Sanchez-Mondragon, Alejo-Molina, S. 

Sanchez-Sanchez, 2005 & 2009. Quiroga and Johnson 1999. And Mitra, Vyas, 

Erenso, 2007),
2 21/ 2, 1/ 2j m a b      , only the 1/ 2j   subspace is 

optically active while the 0j   subspace remains dark.  

We choose the basis of eigenstates of 
2J and zJ , 1/ 2, 1/ 2j m     , 

1/ 2, 1/ 2j m    ,as an appropriate representation for this problem    

represents the vacuum for excitons,   denotes a symmetric delocalized single-

exciton state. If we represent the field state intro each cavity by the Fock state 

,a bn n and consider the QDs in the entangled state involving the vacuum and 

exciton states    
 

, then we  will have an invariant subspace spanned by the 

tensor product 00 ; 00 ; 10 ; 01        .  

With these basis vectors we determine the matrix elements of the Hamiltonian in 

Eq. (3) and obtain the eigenvalues, and the eigenvectors by mean of diagonalization. 

The explicit matrix is 

( ) ( )

0 0

0 0

0 ' 0

0 0 '

A B

T

W g

W g
H H H

g

g

 
 
   
 
 

 

, 
(4) 
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where '= ' W     . An interesting case is for 

'= ' 0W W W        , that is, when we have resonance. In next subsection 

we will use this case in order to calculate the Concurrence function and thus the 

Entanglement of Formation, for now we calculate the general case for the 

Hamiltonian diagonalization. The characteristic polynomial for matrix (4) is given by 
2

2( ) ( ) ( ) 'P g W W           .  

At both cavities with the same field frequency , and we define the constants for 

simplicity as 
1/2 1/2

2 2 2 2 24 2 ' ( ') ( 2 ') (4 ( ') )g W W W W g                   the 

eigenvalues take the form:    1, 2 3, 4(1/ 2) ' ,    (1/ 2) 'E E E EW W         ; Due to 

the tensor product of the quantum states ,j k j k    form a four-dimensional 

basis in the Hilbert space SU(2)  SU(2) . And the corresponding normalized 

eigenvectors are: 

 

 

 

 

1/2
2 2

1 1 1

1/2
2 2

2 1 1

1/2
2 2

3 2 2

1/2
2 2

4 2 2

4 ( ,00 2 ,10 ,

4 ( ,00 2 ,01 ,

4 ,00 2 ,00 ,

4 ,00 2 ,00 .

g g

g g

g g

g g

















      
 

      
 

      
 

      
 

. 

(5) 

Also we defined the frequencies and parameters by 

1 2',   'W W         . Then using the foregoing eigenvectors we get the 

wavefunction for any time. For this reason we need to consider the initial state of the 

quantum dots system. A suitable choice of initial state is a state of Bell. For the sake 

of generality; we use the initial state of the QDs to be
1 2(0) i

qd c c e      
 

, 

where 
1 2 and a a are real constants satisfying the condition 2 2

1 2 1c c  .We will 

consider the initial state of the field to be coherent, or thermal. Then, the initial state 

for the coupled QD-field system can then be written as  

1 2(0) (0) 00 00 .i

qd c c e          
 

 (6) 

We are now able to find the wavefunction of the system, because the energy 

eigenstates form a complete set. Using the eigenvalues and eigenvectors (5), together 

with the initial state (6), (Mitra, Vyas, Erenso, 2007) we obtain the following state 

vector at the time t: 

31 2 4

4

1

1 1 2 2 3 3 4 4

( ) exp( ) (0)

(0) (0) (0) (0) .

N

Ek Ek Ek

k

i ti t i t i t

t i t

e e e e
  

  

       





  

    

      

  (7) 
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Due to the orthonormality of the basis vectors we get the coefficients as 

( , ) ( ) , ( )i i ix t x t jm n t    , and 

  1 3

2 4

0

1

3

( )2 2

1 2

1 1 2 2 2 2

1 2

2 2

1 2
2 2 2 2 2

1 2

1
3 1 2 2

1

2
4 1 2 2

2

( ) ,
(4 )(4 )

4 4
( ) ,

(4 ) (4 )

2
( ) ,

(4 )

2
( ) .

(4 )

i t

i t i t
i

i t

i t

e
x t c

g g

c g e c g e
x t e

g g

g
x t c e

g

g
x t c e

g

 

 






 

 





 


   

 
  

  











. 

(8) 

Then the solution of the system in terms of the standard basis can be written as a 

simple linear combination, i.e.  

1 2 3 4( ) ( ) ( ) ( ) ( )t x t x t x t x t         . (9) 

The coefficients ( )ix t  are given by equations (8).  Based on these results that 

were obtained, in the following section we find the density matrix, as well as reduced 

density matrix in order to calculate the concurrence and entanglement of formation. 

4 Entanglement of Formation for Two QDs as Qubits 

Implementation 

For sake of simplicity, let us assume that both cavities are prepared initially in the 

vacuum state 0 0a b  and the two QDs are in a pure entangled state specified 

below as a Bell state. Under these assumptions, there is never more than one photon 

in each cavity, so the cavity mode is essentially equivalent to a two-level system. This 

allows a uniform measure of quantum entanglement together to concurrence, for both 

dots and the cavity modes.  

According to the above we must note that there are, in principle, six different 

concurrences that provide information about the overall entanglements that may arise. 

We can denote simple form as follows: (Yönac, Yu and Eberly 2006 & 2007) CAB, 

CAb , CAa, CBb, CAb, CBa. Symmetry considerations can provide natural relations among 

them. Here we confine our attention to
ABC .  

So, it should note that we in reality have six individual systems and four qubits: i.e. 

the two QDs (A and B, see figure 1) represent two qubits and two cavities (a and b) 

represent other two qubits itself, plus the combinations in interaction between these 

system as we showed in concurrences. However, we focus only in the AB 

combination in order to measure the entanglement. For calculate the Entanglement of 

formation we need find the density matrix in general form of the coefficients ( )ix t , 
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(Yönac, Yu and Eberly 2006 & 2007) That is, we must to compute the matrix 

elements, for density reduced matrix, whom work for us in order to find out Spin-

flipped matrix which is an ingredient essential in Concurrence function for 

entanglement of formation. Here we show the resulting matrix: 

 

 

   

2

1 1 2 1 3 4

2

1 2 2 2 3 4

2 2

1 3 4 2 3 4 3 4

0 0 0 0

0
ˆ ,

0

0

0 0

0 0
ˆ .

0 0

0 0

x x x x x x

x x x x x x

x x x x x x x x

a w

b z

z c

w d





  

  

 





 
 

 
 

 
 
    

 
 
 
 
 
 

 

(10) 

In the combination of the four qubits that we use as system, appear most the 

features of character universal. But the simplest is first, all reduced to a two-qubit 

form, obtained by tracing over the two qubits, will yield a two-qubits mixed state 

always will have the standard X-form (Yönac M, Yu T and Eberly 2006 and 2007).  

Where 1a b c d    . Second, since the concurrence of this mixed state is easily 

found to be:     2max 0, , 2max 0,C z ad w bc Q    . 

Also, we will encounter the case 0w  , and this equation turns into: 

   2max 0, 2max 0,C z ad Q   .  So it is clear that Q, defined as  

Q z ad  . (11) 

This will be an important quantity. Because this have certain conservation 

properties that derive from Q in some cases because it can be negative, whereas C 

cannot. The information about the entanglement of two QDs is contained in the 

reduced density matrix 
AB  for the two dots which can be obtained from expressions 

(9) and (10) by tracing out the photonic parts of the total pure state. The explicit 4 × 4 

matrix written in the basis  ; ; ;     (Yu, Yonac and Eberly 2002-

2007) is given by 

2

1 1 2

2

1 2 2

2 2

3 4

0 0 0 0

0 0
ˆ

0 0

0 0 0

AB
x x x

x x x

x x







 
 
 

  
 
 

 

. 
(12) 

This is in the standard form of the two-qubit (quantum dots) mixed state, which 

was noted previously by (Yu T and Eberly J H 2007) in order to two level atoms case. 
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Once again the time-dependent matrix elements are given by (5), which we analyzing 

the case when the detuning is zero: '= ' 0W W W        ,in 

resonance. It must be note that only to keep the Förster interaction constant. The total 

of constants defined into equations for coefficients in equations (8) and eigenvectors 

(5) are: 
1 2' 2 ,    ' 2W g W g             and

1/2
2 2( 2 ') (4 ( ') ) 2W W g g         

 therefore the equations (5) and (8) now given 

by: 

 

 

 

 

1

2

3

4

1/ 2 ,10 ,00 ,

1/ 2 ,01 ,00 ,

1/ 2 ,00 ,00 ,

1/ 2 ,00 ,00 .









    
 

    
 

    
 

    
 

 

(13) 

The coefficients must be normalized. Thus, the constants 1c  and 2c  into equations 

must to obey the normalization condition, also if compared to the eigenvectors 

obtained in eqs. (13), the latter are entangled states of Bell (resonant case) where the 

constants are actually of 1/ 2 , except for the sign. Thus the equations for the 

coefficients are: 

 

0

0

2

1 2

( ) ( )

2

( )

3

( )

4

( ) ,
8 2

( )
2 2

1
          cos ,

2

1
( ) ,

2 2

1
( ) .

2 2

i Wt

i
i W g t i W g t

iWt i

i W g t

i W g t

e
x t

g

e
x t e e

gt e

x t e

x t e







   

 

 

 



   



 



 

(14) 

Now we show that the concurrence of the density matrix (12), with references to 

equation (11), this is given first by function ( )ABQ t  as:  

 0 0

1 2 1 2

2

0

2

0

( ) 0

1
          cos( ) ,

16

cos( )cos( )cos( )     (part),1
( ) 

sin( )cos( )sin( )    (part).8

AB

i iiWt iWt

AB

Q t z ad x x x x

gt e e e e
g

gt Wt
Q t

gt Wtg

 





 



    

 

 
 



 

(15) 

So that the Concurrence function we can be think in dual way, the first one as a 

function just of time, which is keeping constant, and the another one as a function of 

two variables, i.e. as function of the time and phase parameter.  
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For sake of simplicity we use only the real part in terms of the cosines functions. 

The imaginary part has a similar behavior. In the figures below we showed several 

cases for both functions with different values of parameters W and g. It must be noted 

that the plots have a behavior of cosine oscillations type, but self-modulate with a 

function of the same nature, i.e. cosine-cosine, and the amplitude not exceeding the 

one, as it should be for Entanglement of Formation.  The graphics are showed in next 

section of results; and the functions for Concurrences are  

02

0

0 02

0

1
( ) cos( )cos( )cos( ) ,

8

 fixed,

1
( , ) cos( )cos( )cos( ) ,     

8

 independent variable.

AB

AB

C t gt Wt
g

C t gt Wt
g





 











 

(16) 

5 Results 

Before presenting graphical results with the plots simulations, first we want to show 

the analytical results without approach with limit cases on the physical parameters: 

 

 

0

2

0

02

cos( ) cos( ) cos(( ) ) 1
( ) ,

16sin( ) sin( ) sin(( ) )

1
( ) cos( )cos( ) , 0.

8

AB

AB

g W t g W t
Q t

gi g W t g W t

Q t g t W
g







  
 
   

 

 
(17) 

Now, when g W ,  in this case,  is the dominant parameter, i.e. the coupling 

constant between the radiation field and the QDs: 

 

 

0

2

0

2 2 2

02 2

2 2 2

0

0

2

0

cos( )cos cos1
( ) ,

sin( )cos sin8

cos ( )cos1
( ) cos ,

8 sin ( )sin

cos( ) cos( ) cos(( ) )1
( ) .

16 sin( ) sin( ) sin(( ) )

AB

AB

AB

Wt gt
Q t

i gt Wtg

Wt
Q t gt

g Wt

g W t g W t
Q t

g i g W t g W t
















  
        

  


   

. 

(18) 

Another interesting case is when we add a parameter   to the others parameters, 

which enables us to get analytical expressions more general, besides being able to 

manipulate this parameter numerically and perturbative way, i.e., 

;  ,  W g W g    : 
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 

 

 

 

0

2

0

2 2
2 0

2 2

0

2
2 2

2 02
2 2 2

0

0

cos( ) cos(2 ) cos( )1
( ) ,

16 sin( ) sin(2 ) sin )

cos cos ( )
1 cos 2

sin sin ( )

1 sin cos ( )
( ) sin 2

16 cos sin ( )

2 1 cos 2 cos(2 )

sin

AB

AB

g t t
Q t

g i g t t

t
gt

t

t
Q t gt

g t

gt

  

  

 

 

 

 



 


  

 
    

  
         

  



.

2 cos singt t t 

 
 
 
 
 
 
 
 
 
 
 

 

(19) 

 

Fig. 2. Plot of the Concurrence for parameters: W=0.5; g=0.365; 
0 0  . In this plot the 

oscillations fluctuate into of the time interval, almost become of top for entanglement of 

formation of one. 

 

Fig. 3. Plot of the Concurrence for parameters: W=0.5; g=0.365; 
0 / 4  . In this case the 

plot decreases the amplitudes of the oscillations, because we do a change of / 4 to the phase. 
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Now we show the Concurrence plots in order to different parameters values, also in 

two, and three-dimensionally. The case 3D we consider the 0 as variable, which 

enables us visualize the contour zones of Sudden Death of concurrence. 

 

Fig. 4. Plot 3D for the Concurrence CAB(t,Φ0); for parameters: W=0.5; g=0.365. 

 

Fig. 5. Concurrence plots CAB(t); for parameters:  W=0.5 and plot4 g=0.8W, plot5 g=0.75W, 

Plot6 g=0.70W, and plot7 g=0.72W. We can see that four combinations for constant g 

proportional to W. The more optimums combination is in order to plot5, and plot7. Plot6 

slightly exceeds the allowable bound for Entanglement of formation and Concurrence of one. 

This is because the interaction constants differ by a percentage equal (or greater) to 30%, as is 

clearly noted in the data above. 
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Fig. 6. Concurrence for the same parameters but plotted in a smaller domain, in order to show 

further details in the zones of minimum of the function CAB(t), the 3D case with (t,Φ0) 

independent variables is showed in next figure 7. Parameters: W=0.5 and plot4 g=0.8W, plot5 

g=0.75W, Plot6 g=0.70W, and plot7 g=0.72W. 

 

Fig. 7. Plots in 3D and Contours for so-called SUDDEN DEATH ZONES by CAB(t,Φ0);  with 

two cases:  W=0.5 and g=0.72W, g=0.80W and the parameter Φ0  is variable, this is 

consequence of the initial state of Bell. We can see that contour zones of sudden death are 

minimums of the plots on the right. The interesting is to note that in this small zone rescaled for 

sake of simplicity that there is not a total sudden death as in the atomic case of the other authors 

[45-50]. What is also seen in previous plots from figures 2 to 6 into their minimum points. 
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Fig. 8. Plots of Contours for so-called SUDDEN DEATH ZONES by CAB(t,Φ0);  for the case:  

W=0.5 and g=0.72W, and the parameter Φ0  is variable, this is consequence of the initial state 

of Bell. We can see the contour zones for sudden death that are minimums on the plots in gray 

color, but without become null totally. 

6 Conclusions 

In this paper we study the dynamics behavior of a system of two QDs embedded into 

own cavity, previously entangled, with initial state type Bell into of the context 

CQED and Förster interaction included into QDs Hamiltonian. This behavior let us 

insight the particular dynamics of transference and quantum communication 

correlations between two qubits, in this case represent for our two QDs, i.e. how is the 

entanglement process after that qubits are entangled and input into cavity in this 

situation of communication to distance without interaction, i.e. how evolve this 

entanglement with the time and consider the initial state of type Bell, which include 

the Φ0 parameter. The way in order to understand and quantify this process without 

ambiguity is obtain a secure measure of the entanglement. This measure is the 

Concurrence and Entanglement of Formation for two qubits (Hill and Wootters 1997; 

Wootters, 1998) only. The measure is defined only for two qubits as entities of two 

states, because there is not an extension of this method to more qubits that to allow 

calculate with precision their entanglement.  

Our results between the two cavity-QD, let us see that the entanglement depend of 

both parameters of interaction, i.e. the interaction field-QDs (g) and the Förster 

interaction (W).  Both interactions must be of the same order, because if either of the 

two differs significantly from another the result found is that oscillations slightly 

exceed the bound of the one for entanglement of formation. In this way we find that 

the interaction parameters must be very well controlled and should not be very 

different in order of magnitude. Also the best way to control them is by making one of 

the two in terms of another one by a minimum percentage, as we can see in figures 5, 

6 and 7. Another one very important is the so-called Sudden Death feature where we 

analyzed in multiples plots in figures 5 and 6, but with greater accurately in contour 

plots 7 and 8, how the Sudden Death zones are minimums, however there is not totally 
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sudden death of entanglement as happen in the cases study for systems of atoms for 

other authors (Yu, Yonac and Eberly 2002-2007) or the case for QDs studied in 

references: (Quiroga-Jhonson 1999; Reina-Quiroga-Jhonson 2000; Mitra, Vyas 

Erenso 2007), in these papers the authors do not even mentioned the case of Sudden 

Death as in atomic situation. We can say that for these QDs system almost there is not 

sudden death because minimum zones are very sharp, i.e. they are smooth curves 

cosine in which do not we get semi-flat zones, that in atomic case is where 

entanglement sudden death occurs. 

This allows us conclude that our QDs system featuring to two qubits is more 

efficient for propagation of entanglement without loss of quantum correlation. 
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