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Abstract. In this paper a study of the influence of luminance L* at the L* a* b* 

color space during color segmentation is presented. The behavior of different 

color image segmentation algorithms is studied, in particular, the techniques 

based on only the Euclidean metric of a* and b* and an adaptive color 

similarity function defined as a product of Gaussian functions in a modified 

HSI color space. For the evaluation purposes, synthetic images that accurately 

assess the performance of the color segmentation were particularly designed. 

The testing system can be used either to explore the behavior of a similarity 

function (or metric) in different color spaces or to explore different metrics (or 

similarity functions) in the same color space. From the obtained results it 

follows that the color parameters a* and b* are not independent on the 

luminance parameter L* as one may initially assume. 

Keywords: Color image segmentation; L*a*b* color space; color metrics; color 

segmentation evaluation; synthetic color image generation. 

1 Introduction 

Image segmentation consists of entire image partitioning into different regions, which 

are similar in some predefined manner. It is an important and difficult task in image 

analysis and processing. All subsequent steps such as object recognition depend on 

the quality of segmentation [1]. 

For some time, the development of segmentation algorithms attracted remarkable 

consideration but the relatively fewer efforts on their evaluation and characterization 

[2, 3, 4, 5]. None of the published automatic segmentation algorithms is generally 

applicable to all types of images and different algorithms are not equally suitable for 

particular applications. For these reasons, the evaluation of different segmentation 
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techniques and their characterization are very important subjects in the study of 

segmentation [3, 5]. 

Perceptually uniform color spaces such as L*a*b*, with the Euclidean metric to 

quantify color distances are commonly used in color image segmentation of natural 

scenes using histogram based or clustering algorithms among others [1]. 

To evaluate the segmentation performance of the Euclidian metric in the L*a*b 

color space, we designed a system that generates synthetic color images and the 

associated ground truth (GT) and evaluates the results with Receiver operating 

characteristics (ROC) curves [7]. The synthetic images where designed to evaluate the 

efficiency of achieved color information from given segmentation algorithms and are 

explained in detail in Section 3. A comparative study with an adaptive color similarity 

function defined as a product of Gaussian functions in a modified HSI color space [6] 

is presented in Section 4. Finally, conclusions are given in Section 5. 

2 Previous Works 

The first comprehensive survey on image segmentation evaluation methods is 

presented in [2]. It brings a coherent classification of existing methods at the time. An 

up to date of 5 years of progresses in the subject is presented in [3] after the first 

survey. Another actualization is presented 5 years later [5], embracing together the 

principal methods of segmentation evaluation available until 2007.  

In [4] a way to design synthetic images and a corresponding GT for evaluating 

segmentation algorithms is presented. They introduce a general framework and 

general design considerations. Also, an evaluation system for generating synthetic 

gray level images taking into account their design considerations is presented.  

3 Design of Synthetic Images for Benchmark Testing 

In [4] the authors present three important design considerations for creating synthetic 

images: 1. Synthetic images should be appropriate for a quantitative study and should 

allow objective evaluations of their properties; 2. The synthetic images should reflect 

the main features of real images, i.e. corruption factors, such as noise and blurring, 

variation of parameters such as size, shape, etc.; 3. The system should allow the 

generation of images with progressive variations of each parameter. In this way the 

study of the influence of each individual parameter is possible. 

Comparative tests between an adaptive color similarity function [6] and the 

Euclidean metric in the L*a*b* color space [8] were performed. The manner in which 

the tests were implemented is as follows: 

In the case of the L*a*b* color space, the RGB image was previously transformed 

to L*a*b* color space discarding in all cases the luminance L* in order to calculate 

the Euclidean distance on the planes a*b* (color information) independently of the 

illumination. Then, the centroids (average of the values a* and b*) representing the 

colors of the figure and the background in the color space L*a*b* were calculated. 

Details are shown in [8].  
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For the adaptive similarity function [6] the following steps were performed: 

1. Samples of both background and figure were taken, from which centroid and 

standard color dispersion were calculated. Details can be consulted in [6]. 2. The 24-

bit RGB image (true color) was transformed into a modified HSI color space. 3. For 

each pixel, the similarity function for the centroids of object and background was 

calculated creating two color similarity images (CSI) [6]. 4. Each pixel of the RGB 

image was classified by calculating the maximum value for each pixel position 

between the CSI images of the object and that of the background. 

The base shape of the synthetic test image was created with the following features: 

1. Concave and convex sections were included in order to make it more representative 

of real images, such as natural flowers. 2. Extreme omnidirectional curvature in the 

entire image was selected to hinder edge detection by mask edge detectors. 3. The 

object was centered in the image. 

The resulting flower-shaped object in the image is considered as the object of 

interest and as the ground truth GT in all subsequent tests (Figure 1 left). 

  

Fig. 1. Flower-shaped ground truth (left) and an image zoomed showing the Gaussian noise 

introduced (right). 

In addition to this object of interest, several features were imposed in order to 

hinder its color-based segmentation: 

1. Low contrast. The contrast between the object and the background in all images 

was very low for an observer, including some in which at a first glance the user 

cannot see the difference (e.g. Flower 5 in Figure 2). The difference between the color 

characteristics of the object of interest and the background we call “Delta” and it 

occurs at different directions of the HSI space. The tests were performed in color 

quadrants 0, 60, 120, 180, 240 and 300 degrees.  

2. Blurred edges by an average filter. A sliding mean filter of size 3 x 3 pixels is 

applied to the whole image in order to blur the corners and to make detection of the 

object more difficult; this averaging is done before the introduction of Gaussian noise. 

3. Introduction of Gaussian noise with SNR value = 1. The noise was applied to 

each RGB channel separately, and later we assembled the channels to create the noisy 

RGB color image with noise. Figure 1 right shows an example of such a noisy image. 

The basic colors selected for both object and background were based on 

maintaining constant intensity at 0.5 and saturation at 0.3 and only varying the hue. 

Hue was selected as the parameter because its change integrates three RGB color 

channels together, making it more difficult to be processed by extending grayscale 

109

Influence of the Luminance L* during Color Segmentation in the L*a*b* Color Space

Research in Computing Science 105 (2015)



techniques on each color channel, thus forcing the segmentation algorithms in 

evaluation to use the color information holistically. 

Samples of pixels corresponding to the figure were obtained by two squares of 2 x 

2 pixels starting at the pixel (84, 84) and (150, 150). Samples for background pixels 

were obtained by two squares of 2 x 2 pixels starting at pixel (15, 15) and (150, 180). 

The images were generated in the sectors 0, 60, 120, 180, 240 and 300 degrees 

corresponding to the images flower_0, flower_1 … flower_5 (Figure 2). To each of 

these test images we later applied a faded shadow in increments of 10% at each step. 

 

Fig. 2. Testing with Low Saturation with Delta in HUE. 

A shadow fading was applied to all noisy blurred images with the light center in 

the fixed coordinates (150,150) in images of 256 x 256 pixels. It was applied 

gradually with 10% increments at each step. Figure 3 shows this for Flower 0.  

 

Fig. 3. Example in color quadrants with a faded shadow applied at 0 degrees. 

4 Results and Discussion 

In this section we show the results in terms of TP (true positives) and FP (false 

positives) plotted against the level of shadow fading, representing by 10% of 

increment at each step. The first position means no shadow and position 11 means 

100% shadow fading. All the images had the same post-processing: elimination of 

areas smaller than 30 pixels and a morphological closing with a circular structuring 

element of radius equal to two pixels. 

The results of the application with the solution given by [6] of the color image 

segmentation with a different level of shadow fading (shown in every even row) 

compared with those obtained with the Euclidean metric in the L*a*b* rejecting L* 

(shown in every odd row) are included in Figure 4 for each color quadrant (0°, 60°, 

120°, 180°, 240° and 300°) and at 10% increments of the shadow fading.  

GT 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0° 

 

110

Rodolfo Alvarado-Cervantes, Edgardo M. Felipe-Riveron, Vladislav Khartchenko, et al.

Research in Computing Science 105 (2015)



GT 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

60° 

 
120° 

 

180° 

240° 

300° 

Fig. 4. Results of the color segmentation achieved between the Euclidean metric of a* and b* 

(top rows of each color) and the adaptive color similarity function (bottom rows of each color), 

for each color quadrant (0°, 60°, 120°, 180°, 240° and 300°) and at 10% increments of shadow 

fading in each step. 

As it is shown in the graphs of Figure 5 and in coincidence with the visual analysis 

of the corresponding flower (Figure 4), segmentation failures in the L*a*b* space 

(right) start at different levels of faded shadow, whereas the adaptive color similarity 

function [6] is practically immune to the faded shadow (left). 

We can see three general trends in the FP behavior in Figure 5 right (See Table 2): 

1. Increase in an angle of approximately 45o in cases of Flower 0 and Flower 3 (with 

diamond marker); 2. Slowly and progressively increases in cases of Flower 1 and 

Flower 4 (with square marker) and 3. Sharply increases in cases of Flower 2 and 
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Flower 5 (with circular marker). The behavior is repeated every 180 degrees and 

coincides with the opponent color positions (yellow-blue for example). 

  

Fig. 5. Plots of the color similarity function [6] (left) and the Euclidean metric in L*a*b* 

rejecting L* (right). 

Figure 6 shows details of the curves related to TP and FP of the color similarity 

function [6], with the following color code: Flower 0 (blue), Flower 1 (green), Flower 

2 (red), Flower 3 (cyan), Flower 4 (purple) and Flower 5 (yellow). Variations in 

curves are lower than 1%. 

To obtain a representative ROC curve illustrating behavior of the Euclidean metric 

in the L*a*b* space (rejecting L*) compared to the color similarity function [6] in all 

color sectors under study, we calculated the average TP and FP for all color flowers, 

obtaining the results shown in Figure 7. 

Table 2. Observations concerning the behavior of the plot curves  

of the two colour metrics. 

Flower Line Color Euclidean metric in L*a*b* rejecting L* 
Color 

similarity 

function [6] 

0 Blue 60% (position 7) Increases at 45° Immune 

1 Green 
30% (position 4) Increases slowly and 

progressively 
Immune 

2 Red 40% (position 5) Sharply increases Immune 

3 Cyan 70% (position 8) Increases at 45° Immune 

4 Purple 
20% (position 3) Increases slowly and 

progressively 
Immune 

5 Yellow 50% (position 6) Sharply increases Immune 
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Fig. 6. Details of TP (left) and FP (right) of the color similarity function [6]. 

 

Fig. 7. ROC curve of the color similarity function [6] (left) and the Euclidean metric 

in the L*a*b* rejecting L.* 

In the ROC curve corresponding to the average of TP and FP of all flowers, it can 

be seen that the results of the adaptive similarity function are maintained in the high 

efficiency area (coordinate 0, 1) while the color segmentation in L*a*b* space 

progressively moves away from the high efficiency area. 

The L*a*b* results keep stable initially and later slowly and progressively moves 

to the upper right area of the ROC curve that can be thought of as the “liberal” side 

(coordinate 1, 1) as they make positive classifications, and, although there is weak 

evidence that almost all positives were classified properly, they have a high rate of 

false positives. 

5 Conclusions 

Regarding the evaluation of the color segmentation method with really difficult 

conditions, we can notice that the adaptive color similarity function performed well in 

all tests and remained close to the high efficiency zone of the ROC curves 

113

Influence of the Luminance L* during Color Segmentation in the L*a*b* Color Space

Research in Computing Science 105 (2015)



(coordinates 0,1) without noticeable changes when the level of faded shadow 

increases as shown in the corresponding PLOT curves. 

The segmentation algorithm using the L*a*b* color space and discarding L* in 

calculating the Euclidean distance, suffered errors in all cases. It manifested in 

different degrees and at different levels of faded shadow (20% to 80%). Three types 

of trends or recurring symmetries can be noticed in sectors with 180 degrees of 

difference: 1. Rise of the curve gradually (Flowers 1 and 4); 2. Rise abruptly (Flowers 

2 and 5), and 3. Increase near at 45° angle (Flowers 0 and 3). 

As it can be seen from the results of both direct segmentation, and from PLOT & 

ROC curves, that the adaptive color similarity function in all cases exceeded the 

Euclidean distance in color space L*a*b* and discarding L*. The similarity function 

segmentation method performed well in all cases with rates higher than 95% of true 

positives (TP) and false positive (FP) rate less than 3% on average. 

 According to the experiment results we believe that keeping high values of TP   

increased only from the FP is due to the position of the center of the shadow fading in 

(150, 150). If this position is moved away from the object of interest, we can reduce 

the quantity of TP. 

For future work we wish to evaluate different color zones like of different 

saturations, gray images, and with delta saturation among others. Our testing system 

can be used either to explore the behavior of a similarity function (or metric) in 

different color spaces or to explore different metrics (or similarity functions) in the 

same color space. Instead of exchanging color spaces in the experiments, it would 

only be necessary to exchange the metric or the similarity function.  

It can be noticed that the non-consideration of the luminance parameter L* in 

calculating Euclidean distance (in each pixel of the object or of the background) did 

not made it immune to changes in lighting; so simple shadow can alter the quality of 

the results, concluding from them that the parameters a*b* from the color space 

L*a*b* are not independent of the L* parameter as one might suppose. 
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