
Flexible Rule-Based Programming for
Autonomic Computing

José Oscar Olmedo-Aguirre1, Marisol Vázquez-Tzompantzi2

1 Cinvestav-IPN, Department of Electrical Engineering, Mexico City,
Mexico

2 Cinvestav-IPN, DCTS, Mexico City,
Mexico

oolmedo@cinvestav.mx, mvazquezt@cinvestav.mx

Abstract. The ECAP rule programming language DLRL is currently
being developed for architecting autonomic systems by coupling deduc-
tion and interaction. Three of the fundamental properties of autonomic
systems, namely self-configuration, self-optimization and self-healing, are
provided by DLRL: high-level program specification that can be user-
defined for self-configuration; program introspection that allows to re-
actively adapt on-line program behavior for self-optimization, and pro-
gram interaction that provides communication and coordination with
the surrounding environment in order to detect deviations from their
expected behavior for self-healing. The DLRL, programming model ex-
tends pure Prolog by including the modal actions of dynamic logic in
the consequent predicates of conditional forward rules. It combines some
the well-known refinements of resolution along with syntactically guided
control strategies to represent and enact problem specifications dealing
with stateless and state-based descriptions. The main contribution of this
work consists in showing the benefits for architecting autonomic systems
in a single, uniform and expressive mulit-paradigm programming lan-
guage for rapidly changing demands of complex problems in distributed
settings.

Keywords: Logic programming, interaction, autonomic computing, self-
management, dynamic logic.

1 Introduction

As the complexity of developing and maintaining distributed applications has
steadily increased, new approaches for software design are needed to provide a
simple yet resourceful conceptual framework. The traditional off-line feedback
for reconfiguring and reprogramming software needs to be replaced by an on-line
self-management software. The software needs to adapt to the rapidly changing
demands of modern applications and still keeping the desired quality of service
within reasonable costs during operation. IBM introduced the main properties

63 Research in Computing Science 105 (2015)pp. 63–73; rec. 2015-08-22; acc. 2015-10-12

of self-management, known as the self-* properties of an autonomic system:
self-configuration, self-optimization, self-healing and self-protection [1, 2]:

– Self-configuration. An autonomic system has the ability to configure itself
according to high-level goals stated in a declarative manner, by specifying
what is desired, not necessarily how to accomplish it.

– Self-optimization. An autonomic system pursues the best use of resources.
After some automated reasoning, the autonomic system may conclude to
initiate a change to the system behavior, either reactively by pursuing the
user demands or pro-actively by systematically satisfying its own goals, in
an attempt to improve performance or quality of service.

– Self-healing. An autonomic system detects, analyzes and diagnoses (poten-
tial) problems. The kind of problems detected can be low-level like hardware
malfunctioning or high-level like a non-responsive software module. Being
distributed, the autonomic system may take advantage of the available re-
dundancy in both hardware and software to fix the problem, by switching to
a trusted redundant component or by downloading and installing a software
update. Because this replacement process is a potential risk for various kinds
of malware intrusion, self-healing must perform exhaustive checking that
ensures the system exhibits the expected trusted behavior before becoming
an operational component in its distributed setting.

– Self-protection. An autonomic system protects itself not only from intrusion
attacks but also from users who inadvertently make changes that opposes to
the overall system purposes and behavior. The system opportunely verifies
and adjusts its settings on security, privacy and data protection based on
the rise of unexpected patterns of external activity.

DLRL is a symbolic rule-based programming language where self-configuration,
self-optimization and self-healing, are respectively provided by:

– high-level program specification that can be user-defined
– program introspection that allows to reactively adapt on-line program be-

havior
– program interaction that provides communication and coordination with the

surrounding environment in order to detect deviations from their expected
behavior

The property of self-protection is believed by the authors that can be derived
from the others three in the setting of an appropriate architecture. DLRL is
an ECAP programming language with deductive, introspective and interactive
capabilities that provide a run-time system that is able to reconfigure and
recompile program code on demand whenever the changes of the surrounding
environment compromises the goals of the program purpose. ECAP stands for
Event-Condition-Action-Postcondition an extension of usual ECA rules com-
monly found in database management systems where the Postcondition im-
poses additional constraints to the result of the Action. DLRL borrows from
Indeed [5] its state-based forward conditional rules and from DLProlog [6, 7] the

64

José Oscar Olmedo-Aguirre, Marisol Vázquez-Tzompantzi

Research in Computing Science 105 (2015)

dynamic logic modalities [4] for efficient imperative program execution. Thus,
it is able to combine efficiently stateless and state-based reasoning along with
coordinated interaction. The computational model comprises various forms of
resolution-based inference procedures, like SLD-resolution, UR-resolution and
positive hyper-resolution [10, 11], to describe respectively stateless deduction and
state-based transitions. The coordination model consists of a transactional global
memory of ground predicates along with a strategy for the theorem prover to
control program execution by syntactically guided rule selection. In addition,
the set of support restriction strategy [11] coordinates the input and output of
facts with the shared memory, maintaining the coherence of the current state of
the program.

The paper is organized as follows. In section 2, a brief revision of the related
work is presented, In section 3, we illustrate the forward and backward reasoning
schemes that arise from the computational model with a programming example.
Next, in section 4, the syntax and the declarative semantics of the the DLRL

programming language is presented. Finally, in section 5 some remarks are given
to conclude.

2 Related Work

Let us briefly explore other approaches that can be compared with ours: res-
olution theorem provers, constraint logic programming and coordination logic
programming. The resolution-based theorem prover Prover9 [10, 11] comprises
a number of refinements of resolution along with a set of control strategies to
prune the explosive generation of intermediate clauses. However, Prover9 does
not account for interaction. The set of all instantaneous descriptions essentially
corresponds to the set of support strategy. In Prover9, a clause is selected and
removed from the set of support to produce a new set of clauses deduced from the
axioms of the theory. Then, after simplifying a new clause by demodulation and
possibly discarding it by either weighting, backward or forward subsumption,
the new clause is placed back to the set of support. Concurrent Constraint
Programming (CCP) [8] proposes a programming model centered on the notion of
constraint store that is accessed through the basic operations ’blocking ask’ and
’atomic tell’. Blocking ask(c) corresponds to the logical entailment of constraint
c from the contents of the constraint store: the operation blocks if there is not an
enough strong valuation to decide on c. In this respect, the blocking mechanism
is similar to the one used in DLRL to obtain the set of ground facts that match
with the left-hand side of some rule. Besides, the constraint store shares some
similarities with the global memory of ground facts. However, operation tell(c)
is more restrictive than placing ground atoms in the global memory because
constraint c must be logically consistent with the constraint store. Extended
Shared Prolog (ESP) [3] is a language for modeling rule-based software processes
for distributed environments. ESP is based in the PoliS coordination model
that extends Linda with multiple tuple spaces. The language design seeks for
combining the PoliS mechanisms for coordinating distribution with the logic

65

Flexible Rule-Based Programming for Autonomic Computing

Research in Computing Science 105 (2015)

programming Prolog. Coordination takes place in ESP through a named multiset
of passive and active tuples. They correspond to the global memory of facts in
DLRL although no further distinction between passive and active ground facts is
made. ESP also extends Linda by using unification-based communication and
backtracking to control program execution.

3 A Programming Example

As autonomic systems perceive the surrounding environment through sensors
and act upon it through effectors, their interaction can effectively be decoupled
by a global shared transactional memory consisting of a multiset of basic facts
(ground predicates) that can be implemented following the interaction approach
of Wegner [10]. By abstracting away interaction from deduction, the inherently
complex operational details of sensors and effectors become irrelevant. The be-
havior of each user-defined system is described by a set of backward and forward
rules that describe the exchange of information through the global memory.
As an example, consider the problem of converting a sequence of digits to
obtain its numeric value where the sequence is fragmented in subsequences that
are dispersed across a large partitioned region. This problem is representative
of a class of problems that deal with summarizing information coming from
disperse geographical regions, like those that deal with calculating the average
temperature, humidity or atmospheric pressure of a large region, for example. In
order to perform the conversion, the subsequences need to be retrieved and
incorporated into the calculations in a coordinated manner. Because of the
underlying indeterminism, sometimes one method may lead to shorter processing
time for some regions than for others. The problem addressed here can be
stated as finding and applying the faster method suitable for some region and
to incorporate this partial result into the overall calculation.

For the conversion, a recursive definition of the basic arithmetic operators is
given next. Figure 1 shows theory Natural for the natural numbers written in
DLRL, closely similar to those written in pure Prolog. Similar rules, not presented
here, can be given for arithmetic multiplication. This theory uses backward rules
that have the general form P ⇐ P1, . . . , Pn, where P, P1, . . . , Pn are atomic
predicates, P is the consequent, or simply the head of the rule and P1, . . . , Pn
is the antecedent, or simply the body of the rule, with n ≥ 0. The ellipsis
stands for the conjunction of predicates P1, . . . , Pn if n > 0 and for true if
n = 0. The logical propositions of the theory are built upon infix predicates =,
<, and ≤, whose recursive definitions are given by backward rules N1 to N5.
Natural represents the deductive component of the interactive parser. Figure 2
shows a theory written in DLRL for a parallel Parser that extends Natural. This
theory uses forward rules that have the general form E1, . . . , En |C ⇒ [A]P
with n ≥ 0. The declarative reading of the forward rule is that, if appropriate
predicates P1, . . . , Pn have been placed in the shared memory such that each
Ei (i = 1, . . . , n) matches a distinct Pj and their contents satisfy the condition

66

José Oscar Olmedo-Aguirre, Marisol Vázquez-Tzompantzi

Research in Computing Science 105 (2015)

C, then the action (i.e. imperative program) A is executed to obtain the values
bound to the variables occurring in the postcondition P .

The conversion methods use forward rules to define a simple bottom-up
parser whose syntactic entities are represented by ground atomic predicates.
T (n, t) asserts that symbol t occurs at position n, while E(n1, n2, x), with
n1 ≤ n2, asserts that the sequence of symbols from n1 to n2 forms a well-formed
arithmetic expression whose evaluation is the integer value x.

The three conversion methods considered here are presented next. Figure 2
shows the rules of a method based on a parallel composition from smaller
fragments that are adjacent to compose a larger one. Figure 3 shows the rules
of a method based on a sequential conversion of digits, proceeding from left to
right, starting with the delimiter ’[’ and ending with the delimiter ’]’. Finally
Figure 4 shows the single rule of a method that uses a sequential implementation
of the method shown in Figure 3. The rules have been named consecutively as
R1, R2, . . . , R6. In that follows, the user-defined rule Ri : Ei|Ci ⇒ [Ai]Pi will be
simply designated by its index i instead of Ri for brevity.

N1 : 0 + y = y ⇐
N2 : (x+ 1) + y = (x+ y) + 1 ⇐
N3 : 0 ≤ y ⇐
N4 : (x+ 1) ≤ (y + 1) ⇐ x ≤ y

Fig. 1. Natural numbers using backward rules.

R1 : T (n, x) | digit(x)⇒ [z := toInt(x)]N(n, n, z).
R2 : N(n1, n2, x), N(n3, n4, y)

| n1 ≤ n2, n2 + 1 = n3, n3 ≤ n4

⇒ [z := x× 10n4−n3+1 + y]N(n1, n4, z).
R3 : T (n1,

′[′), N(n2, n3, x), T (n4,
′]′)

| n1 + 1 = n2, n2 ≤ n3, n3 + 1 = n4

⇒ E(n1, n4, x).

Fig. 2. Parallel parser of numbers.

The scheduler selects and applies rules according to the rules S1, ECi , APi
and M1 shown in Figure 5. Rule S1 applies to a set of user-defined rules that
are in conflict like the set {R3, R4, R6}. The action of rule S1 performs a linear
search for those userd-defined rules that can be selected. From them, the one
selected has the minimum average time of execution. This criterion helps not
only to select the historically faster rule but also to avoid oscillations caused by

67

Flexible Rule-Based Programming for Autonomic Computing

Research in Computing Science 105 (2015)

R4 : T (n, ′[′)⇒M(n, n, 0).
R5 : N(n1, n2, x), T (n3, t)

| n1 ≤ n2, n2 + 1 = n3, digit(t)
⇒ [z := x× 10 + toInt(t)]N(n1, n3, z).

R5 : N(n1, n2, x), T (n3,
′]′)

| n1 ≤ n2, n2 + 1 = n3

⇒ E(n1, n3, x).

Fig. 3. Sequential parser of numbers with three rules.

R6 : T (n1,
′[′)

⇒



intx, t, n, v :

x, n := 0, n1 + 1;
T (n, t)?; digit(t)?;
v := toInt(t);
x, n := 10× x+ v, n+ 1;
retract(T (n, t))

 *;

t = ′]′?;
z, n2 := x, n




E(n1, n2, z).

Fig. 4. Sequential parser of numbers with a single rule.

sporadic fluctuations. Note that rule evaluates asserted predicates ready(i) and
average(i, t) to determine if rule i can be selected for execution and to obtain the
average execution time t, respectively. Once obtained the statistically faster rule
m, the predicate ready(m) is discarded to avoid applying the rule once more. A
request for applying the faster rule is also established by asserting the predicate
do(m). shown in Figure 5.

The rule conflict solver and the rule executor are given by rules ECi de-
rived from the event-condition parts and rules APi derived from the action-
postcondition parts of each user-defined rule i. The purpose of rules ECi and
APi is to produce the same effect caused by rule Ei |Ci ⇒ [Ai]Pi though
in this case by mediation of the rule scheduler S. In order to produce this
effect, the user-defined rule i is split into two parts at compilation-time, the
event-condition and the action-postcondition that are later rejoined at run-time
by the scheduler. The event-condition parts Ei |Ci are embedded in rule ECi,
while the action-postcondition parts [Ai]Pi are embedded in rule ACi, producing
in fact two set of rules. The purpose of the rules ECi is to determine for which
of them there are available asserted predicates that unifies with the event part
of rule and if such unifier satisfies the condition part of the user-defined rule
Ei |Ci ⇒ [Ai]Pi. If such a unifier exists, the values bound to the variables
are orderly passed to the corresponding rule executor in order to instantiate
the variables used in the action-postcondition parts of the corresponding rule,
producing in this way the same effect.

68

José Oscar Olmedo-Aguirre, Marisol Vázquez-Tzompantzi

Research in Computing Science 105 (2015)

S1 : S ⇒



int m, i, t;
(m, i) := (∞, 0);
i < N?;

ready(i)?;
average(i, t)?;

(t < m?;m := i ∪ skip);
i := i+ 1

 *;

retract(ready(m));
assert(do(m))


S

ECi : EC, Ei |Ci

⇒
[
assert(ready(i));
assert(input(i, fvlist(Ei ∪ Ci)))

]
EC

ACi : AP, do(i), input(i, fvlist(ECi))

⇒


assert(startedAt(i, now()));
retract(input(i,));
Ai;

assert(Pi);
assert(endedAt(i, now()))

 AP

M : M,average(i, e), startingAt(i, s), endingAt(i, f)

⇒


retract(average(i, e));
retract(startingAt(i, s));
retract(endingAt(i, f));
assert(average(i, newaverage(e, s, f)))

M

Fig. 5. Scheduler rules.

In rule ECi, the expression fvlist({T (n, x), digit(x)}) = [n, x], determined
at compilation-time, produces the list of variable names in the textual order in
which they appear in both the event and the condition parts of rule i. Thus for
example, rule EC1 shown in Figure 6 is obtained from rule R1 in this manner.

where for rule P1, fvlist({T (n, x), digit(x)}) = [n, x] . Note that neither this
rule nor any other rule of this set modifies the knowledge base of the asserted
predicates as they only obtains the values bound to the variables and evalu-
ates the condition with such values. The asserted predicate ready(i) tells the
scheduler that the user-defined rule i is selectable, while the asserted predicate
input(i, vs) tells the executor APi to bind its orderly list of variables with the
list vs of values by means of unification. The purpose of the rule executor APi
is to perform the action part of the user-defined rule i, given the values passed
through the asserted predicate input(1, [x, n]) and then binding the variables
to their respective values in the so-called input substitution. Then, after the
action terminates with a binding of values to variables, the so-called output
substitution, rule APi asserts the instance of the postcondition N(n, n, z) under
the composition of both the input and the output substitutions. For example,

69

Flexible Rule-Based Programming for Autonomic Computing

Research in Computing Science 105 (2015)

EC1 : EC, T (n, x) | digit(x)

⇒
[
assert(ready(1));
assert(input(1, [n, x]))

]
EC

AP1 : AP, do(1), input(1, [n, x])

⇒


assert(startedAt(1, now()));
retract(input(1,));
z = toInt(x);
assert(N(n, n, z));
assert(endedAt(1, now()))

AP

Fig. 6. From rule P1, rules EC1 and AP1 are extracted and handled by the scheduler.

for the user-defined rule R1, the rule AP1, obtained as indicated before, is shown
in Figure 6, where the asserted predicate input(1, [x, n]) helps to instantiate the
variables of the input substitution rule AP1.

Finally, rule M1 describes the simple behavior of the monitor. The monitor
simply determines the average execution time for the actions of each of the
methods described in Figure 2 to 4. The execution time is calculated as the
difference between the final time f and the initial time s of execution. The new
average is recalculated from the previous one e along with s and f using function
newaverage(e, s, f).

4 DLRL Formal Description

An experimental system for DLRL has been built to evidence the viability of the
approach. The system consists of a parser with integrated type inference to de-
cide whether the program constructs are well-formed. The computational model
is described as a structured-operational semantics interpreter that calculates the
next state of the shared memory.

Let Σ =
⋃
αΣα be a set of constructor (constant) names and let Ξ =

⋃
β Ξβ

be a set of variable names, each partitioned by the basic types bool, int, and act,
among others. The following syntactic categories are built upon the signature
(Σ,Ξ):

Terms T (Σ,Ξ) T ::= x | c | c(T1, . . . , Tn)
Predicates P (Σ,Ξ) P ::= false | true | T1 = T2 |

p(T1, . . . , Tn)
Goals G(Σ,Ξ) G ::= P | G1 ∧G2

Horn clauses B(Σ,Ξ) B ::= P | P ⇐ G | ∀x.B
Events E(Σ,Ξ) E ::= P | E1 , E2

Actions A(Σ,Ξ) A ::= skip | fail | G? | (A) |
A1;A2 | A1 ∪A2 | A* |
int x1, . . . , xn : A |
x1, . . . , xn := T1, . . . , Tn |
assert(p(T1, . . . , Tn)) |
retract(p(T1, . . . , Tn))

Modal actions A(Σ,Ξ) M ::= P | [A] M | 〈A〉 M
Forward rules F (Σ,Ξ) F ::= M | E |G⇒M | ∀x.F

70

José Oscar Olmedo-Aguirre, Marisol Vázquez-Tzompantzi

Research in Computing Science 105 (2015)

Variables occurring in an action A are either logical variables or local imper-
ative variables. Logical variables occurring in a clause are universally quantified,
whereas local variables are introduced by declaration within an action. A decla-
ration of local variables int x1, . . . , xn : A creates new local imperative variables
whose scope and duration are restricted to the block A. A simple assignment x :=
T evaluates the term T in the current state and the resulting constant value is
assigned to x. Logical and imperative variables are compatible in assignments of
the same type, so they can appear in both sides of the assignment. Note however
that logical variables can be defined at most once, whereas imperative variables
can be redefined. A multiple assignment x1, . . . , xn := T1, . . . , Tn evaluates all
the terms at the right-hand side in the current state and the resulting values are
assigned to the corresponding variables at the left-hand side of the assignment.
The action assert(p(T1, . . . , Tn)) introduces the predicate p(T1, . . . , Tn) into
the knowledge base making it valid, whereas the action retract(p(T1, . . . , Tn))
removes the predicate p(T1, . . . , Tn) from the knowledge base making it invalid.
Being these actions borrowed from standard Prolog, they are not intended to
be blocking actions, like in other Linda-like coordination models, and therefore
they can only succeed or fail. Modal necessity composition [A] P means that
after executing action A, postcondition P is necessarily true.

In a signature (Σ,Ξ) with variables, a substitution is a partial function σ :
Ξ → T (Σ,Ξ), where σ(x) 6= x for any variable x ∈ Ξ. {} denotes the empty
substitution. A ground substitution is a substitution σ : Ξ → T (Σ) valued on
ground terms. For any variable x ∈ Ξ and any substitution σ, let xσ = σ(x) if
x ∈ dom(σ) and xσ = x otherwise. For any term t ∈ T (Σ,Ξ), let tσ be the term
obtained by substituting any variable x appearing in T by xσ:

x{} = x

xσ =

{
x if x 6∈ dom(σ)
σ(x) if x ∈ dom(σ)

c σ = c
c(T1, . . . , Tn)σ = c(T1 σ, . . . , Tn σ)

[A] p {} = [A] p
[A] p σ = [σ:=;A] p

where notation [σ:=] stands for the multiple assignment x1, . . . , xn := T1, . . . , Tn
obtained from the substitution σ = {x1 7→ T1, . . . , xn 7→ Tn}, for 1 ≤ n. Thus the
substitution for a modal action A is defined as the initial value that the variables
take before the action starts its execution. The composition of two substitutions
σ0, σ1 ∈ Ξ → T (Σ,Ξ), written σ0 · σ1, is defined as

σ0 · σ1 : x 7→

 (xσ0)σ1 if xσ1 6∈ dom(σ1)
xσ1 if x ∈ dom(σ1)− dom(σ0)
failure otherwise

Besides the natural extension to terms T (Σ,Ξ) → T (Σ,Ξ), substitutions are
also extended to predicates, goals, and both backward and forward rules.

71

Flexible Rule-Based Programming for Autonomic Computing

Research in Computing Science 105 (2015)

The backward computation relation / ⊂ G(Σ,Ξ) × (Ξ → T (Σ,Ξ)) consists
of pairs relating goals and substitutions, where the substitutions are defined
upon the variables occurring in a renamed variant of the rule. An instantaneous
description I ⊂ P (Σ) × (Ξ → T (Σ)) relates ground predicates and ground
substitutions, describing a portion of the current state of the shared memory. The
substitutions keep a track of the bindings for all the variables that occurred in the
renamed variant of each forward rule applied. The forward computation relation
. ⊂ P(I) × P(I) relates pairs of instantaneous descriptions. The transition
relations are defined in Figure 7.

Backward computation
P ′ ⇐ G′ ∈ B(Σ,Ξ)

Pσ′ = P ′σ′

({P} ∪G, σ) / (G′σ′ ∪Gσ′, σσ′)

Forward computation
E1, . . . , En, P | G⇒ [A]P ′ ∈ F (Σ,Ξ)

Piσi = Ei (i ∈ 1, ..., n)
(G, σ1 . . . σnσ) /∗ ({}, ι)

{(P1, σ1), . . . , (Pn, σn), (P, σ)} ∪ I
.

{([ι:=;A; o:=]P ′, ιo)} ∪ I

Fig. 7. Operational semantics of backward and forward rules.

The backward computation rule describes a refutation step from ({P}∪G, σ)
to (G′σ′∪Gσ′, σσ′) by replacing the head Pσ′ with the body G′σ′ of the instance
of the backward rule P ⇐ G′ under a suitable substitution σ′ such that Pσ′ =
P ′σ′. The new goal is an instance under σ′ of the body G′ and the remaining
goal G, along with the new answer substitution obtained from the composition
of σ′ with the previous one σ. In case that the application of the rule leads to a
failure, another backward rule if any is selected and applied after backtracking
to the previous goal and the previous substitution; otherwise, if no more rules
can be selected, the backward computation terminates in failure.

The forward computation rule E1, . . . , En, P | G ⇒ [A]P ′, with n > 0,
can be selected for deducing the ground predicate P ′ιo from Pσ only if the
following three conditions hold: (i) there are n ground predicates P1, . . . , Pn
already asserted in the shared memory, (ii) there are n ground substitutions
σ1, . . . , σn that makes syntactically identical the corresponding instances of each
event Ei with an appropriate predicate Pi, i.e. equation Eiσi = Piσi holds for
1 ≤ i ≤ n, and (iii) the composition σ1 · · ·σnσ of the n substitutions along
with σ satisfies the goal G. Whenever these conditions are met, the forward rule
can be applied. With the ground substitution σ1 · · ·σnσ starts the backward
computation rule that leads to the input substitution ι with bindings for the new

72

José Oscar Olmedo-Aguirre, Marisol Vázquez-Tzompantzi

Research in Computing Science 105 (2015)

variables that G may introduce. The instance under ι of the modal action [A]P is
then executed following the standard interpretation of the action connectives [4].
Assuming that A terminates starting with the initial values given by ι, the
postcondition P ′ becomes satisfied by the substitution ιo, where o is the output
substitution produced by A on the output variables. However, if the guard
Gσ fails, another set of predicates asserted in the shared memory must be
considered. If no more possible selections of predicates were possible for the
forward rule, another rule is selected if any. If no more forward rules were
applicable, the system would appear non-responsive until another predicate
assertion were eventually produced in the shared memory.

5 Conclusions

The problem of coupling interaction in a resolution theorem prover with syntac-
tically guided selection of the control strategy to be used has been presented in
this paper. The experimental programming language DLRL has been designed to
deal with state-based descriptions using forward rules and stateless deduction
using backward rules. The programming model allows to combine backward and
forward rule chaining in a simple and more efficient manner.

References

1. P. Horn: Autonomous Computing: IBMs perspective on the state of Information
Technology. IBM Research (2001)

2. IBM: An architectural blueprint for autonomic computing. Tech. Rep., IBM (2003)
3. P. Ciancarini: Coordinating Rule-Based Software Processes with ESP. ACM Trans.

on Software Engineering and Methodology, 2(3), 203–227 (1993)
4. D. Harel, J. Tiuryn, D. Kozen: Dynamic Logic. Cambridge, MA, USA, MIT Press

(2000)
5. O. Olmedo-Aguirre, G. Morales-Luna: Indeed: Interactive Deduction on Horn

Clause Theories. In: Proceedings IBERAMIA 2002, LNAI, vol. 2527, pp. 151–160,
Springer-Verlag (2002)

6. J. O. Olmedo-Aguirre, G. Morales-Luna: A Dynamic Logic-based Modal Prolog.
In: Proceedings MICAI 2012, CPS IEEE Computer Society, pp. 3–9 (2012)

7. J. O. Olmedo-Aguirre: DL Prolog: Another Unifying Programming Language.
Research in Computing Science, vol. 60, pp. 23–33 (2012)

8. V.A. Saraswat: Concurrent Constraint Programming. In: Records of 17th ACM
Symposium on Principles of Programming Languages, San Franciso, CA, pp. 232–
245 (1990)

9. P. Wegner: Interactive Software Technology. In: CRC Handbook of Computer
Science and Engineering (1996)

10. L. Wos, R. Overbeek, E. Lusk, J. Boyle: Automated Reasoning. Introduction and
Applications. McGraw-Hill (1992)

11. L. Wos, G. Pieper: A Fascinating Country in the World of Computing: Your Guide
to Automated Reasoning. World Scientific Publishing Co. (1999)

73

Flexible Rule-Based Programming for Autonomic Computing

Research in Computing Science 105 (2015)

