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Abstract. The pickup and delivery problem (PDP) considers a set of
transportation requests, which specify the quantity of product that has
to be picked up from an origin and delivered to a destination. There
exist a number of vehicles available to be used for completing these
tasks. PDP consists of finding a collection of routes with minimum
cost, such that all transportation request are serviced. Traditionally,
cost has been associated with the number of routes and the total travel
distance. However, in many applications, some other objectives emerge,
for example, the minimization of travel time and the maximization of the
collected profit. If we consider all these four objectives equally important,
PDP can be tackled as a many-objective problem. In this paper we are
interested in analyzing this many-objective problem in order to study
some of its properties, specifically, (i) the change of difficulty when the
number of objectives is increased, and (ii) the conflict degree between
each pair of objectives. In order to analyze these topics, we compare the
performance of a recently proposed multi-objective evolutionary algo-
rithm against that of the well-known ε-MOEA, which has shown good
results in many-objective problems.
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1 Introduction

The pickup and delivery problem (PDP) is part of the class of problems known
as vehicle routing problem (VRP) [7], which is well-known to be NP-hard [9].
The PDP considers transportation requests, which are defined between pairs of
customers (origin and destination). The problem consists in designing a set of
routes with minimum cost to service all transportation requests.

Cost is regularly associated with the number of routes and the travel dis-
tance, however, there are several other sources of cost [6]. One generalization of
the PDP is the PDP with time windows and selective requests (PDPTWSR),
which considers two additional sources of cost, namely the travel time and the
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uncollected profit. Moreover, if those four objectives are considered to be equally
important, PDPTWSR can be tackled as a many-objective problem.

The PDPTWSR is defined as follows. There is a set V = {0, 1, . . ., N , N +
1, . . . , 2N} of 2N + 1 vertices. Customers are represented by the vertices in
the subset V ′ = V \ {0}. Each customer i ∈ V ′ is geographically located at
coordinates (xi, yi), and has an associated time window [bi, ei], during which
it has to be serviced, and a service time si required to load or unload goods.
Customer subset VO = {1, . . . , N} corresponds to the pickup locations, while
customer subset VD = {N + 1, . . . , 2N} represents the delivery locations.

The set T R = {1, . . . , N} represents N transportation requests. Each trans-
portation request i ∈ T R specifies the size qi of the load to be transported and
the locations j ∈ VO and k ∈ VD where the load will be collected (origin) and
delivered (destination), respectively. Finally, each transportation request i ∈ T R
has an associated profit pi, hence P =

∑
i ∈ T R pi is the total possible profit.

The vertex 0 is located at (x0, y0) and has a time window [0, e0 ≥ max {ei :
i ∈ V ′}]. This vertex is the base of a homogeneous fleet of vehicles which have
capacity Q, greater or equal to the maximum size of the loads to be transported.

The travel between vertices i and j has associated costs, such as the dis-
tance dij (relating to fuel cost) and travel time tij (relating to driver salary).
Transportation requests are optional to be serviced, this means that origin and
destination customers associated to a request might not be visited. Therefore,
if they are not visited, there is no profit collected from that request. For the
benchmark problems to be considered later, unit velocity and direct travel are
assumed, so the times and distances are both simply taken to be the Euclidean
distances. Moreover, the profit pi associated to transportation request i ∈ T R
will be equaled to the size qi of the transportation load. For real-world problems,
however, the distances dij are unlikely to be Euclidean, the travel times tij are
unlikely to be simply related to the distances, and profit does not necessarily
involves only the load to be transported.

The aim of the problem is to find the set of a minimum number routes
which minimize the total cost, the travel distance and the uncollected profit,
such that: (i) each route starts and ends at the base, (ii) customers related
to each transportation request are visited by only one vehicle or none, (iii) the
vehicle load must not, at any time, be negative and must not exceed the vehicle
capacity Q, (iv) for each request i, its corresponding pickup location pi must be
visited in the same route and before its corresponding delivery location di, and
(v) for each request i, its corresponding delivery location di must be visited in
the same route and after its corresponding pickup location pi.

Having defined the PDPTWSR, we can define four key objectives this paper
will concentrate on minimizing, namely the number of routes or vehicles (fR),
the total travel distance (fD), the total travel time (fT), and the uncollected
profit (fP), subject to the constraints explained above.

To the best of our knowledge, the problem under study has not been tackled
before. However, the pickup and delivery problem with time windows (PDPTW)
has been subject of plenty of investigation. Many approaches for solving the

52

Abel García-Nájera and Antonio López-Jaimes

Research in Computing Science 104 (2015)



PDPTW can be found in the literature and Parragh et al. [11] make an excellent
survey of many of them. We will review some previous studies which have tested
their approaches on the PDPTW benchmark sets of Li and Lim [10].

Li and Lim [10] introduced a metaheuristic based on a tabu-embedded sim-
ulated annealing algorithm, which restarts a search procedure from the current
best solution after several non-improving search iterations. This restart strategy
guides the local search in three neighborhoods defined to solve the general
multiple-vehicle PDPTW. This is combined with a metaheuristic based on a K
restarts annealing procedure with tabu-list to avoid cycling in the search process.
In addition, authors generated several benchmark instances which are used in
this study. Bent and Van Hentenryck [1] proposed a two-stage hybrid algorithm.
The first stage uses a simple simulated annealing algorithm to decrease the num-
ber of routes, while the second stage uses a large neighborhood search to decrease
the total travel distance. Ropke and Pisinger [12] presented an adaptive large
neighborhood search, which is and extension to the large neighborhood search
and the ruin-and-recreate heuristic. The proposed method is composed of a
number of competing subheuristics that are used with a frequency corresponding
to their historic performance. Hasle and Kloster [5] introduced SPIDER, which
is a heuristic approach based on local search. This approach has three phases:
construction of initial solutions, tour depletion, and iterative improvement. The
construction phase considers extensions of classical constructions heuristics as
well as other methods proposed by the authors. In the tour depletion phase, a
greedy tour removal heuristic is invoked. A single tour is depleted, and insertion
of the unassigned orders in the remaining tours is attempted. The new solution
is accepted if all unassigned orders are successfully inserted in the remaining
tours. Finally, the iterative improvement phase is based on variable neighborhood
descent, using a selection of several intra-tour, inter-tour, and special operators.

In the above reviewed studies, the PDP has been solved considering the min-
imization of the number of routes first, and then, the total travel distance. More
recently, Garćıa-Nájera and Gutiérrez-Andrade [3] proposed a multi-objective
evolutionary approach for solving the PDPTW, minimizing the number of routes,
the travel distance, and the travel time simultaneously. Their approach was able
to find many best-known solutions to benchmark instances and outperformed a
well-known multi-objective optimizer.

As far a we are concerned, the study of Garćıa-Nájera and Gutiérrez-Andrade
[3] is the only regarding the solution of the PDPTW considering multiple ob-
jectives. The present study aims at remedy this situation, that is, the aim is to
analyze the many-objective problem in the sense of how difficult the problem is
when more objectives are considered.

The remainder of this paper is organized as follows. Section 2 introduces
the main concepts of multi-objective optimization and explains the performance
metrics that are used here to compare algorithms. The multi-objective optimizers
used in this study are briefly described in Section 3. Then, Section 4 presents the
analysis of the results from both algorithms. Finally, we present our conclusions
in Section 5.
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2 Multi-objective Optimization Problems

Any multi-objective optimization problem can be defined, without loss of gener-
ality, as the problem of minimizing f(x), subject to gi(x) ≤ 0, ∀ i ∈ {1, . . . , p},
and hj(x) = 0, ∀ j ∈ {1, . . . , q}, where x ∈ X is a potential solution to the
problem, X is the domain of solutions, f : X → Rm are the m objective functions,
and the constraint functions gi, hj : X → R delimit the feasible search space.

We say that solution x dominates solution y, written as x ≺ y, if and only
if fi(x) ≤ fi(y), ∀ i ∈ {1, . . . ,m}, and ∃ j : fj(x) < fj(y). Consequently,
solution x ∈ S ⊆ X is non-dominated with respect to S if there is no solution
y ∈ S such that y ≺ x. Solution x ∈ X is said to be Pareto optimal if it
is non-dominated with respect to X , and the Pareto optimal set is defined as
Ps = {x ∈ X | x is Pareto optimal}. Finally, the Pareto front is defined as
Pf = {f(x) ∈ Rm | x ∈ Ps}.

In contrast, with single-objective problems, where one can straightforwardly
compare the best solutions from the various approaches studied, multi-objective
problems have to compare whole sets of solutions. Many performance indicators
have been proposed in the literature, being two of them the hypervolume and
the generational distance, which are explained next.

2.1 Hypervolume Indicator

The hypervolume performance metric H(A, z) concerns the size of the objec-
tive space defined by the approximation set A, which is limited by setting
a suitable reference point z. Formally, for a two-dimensional objective space
f(x) =

(
f1(x), f2(x)

)
, each solution xi ∈ A delimits a rectangle defined by(

f1(xi), f2(xi)
)

and the reference point z = (z1, z2), and the size of the union of
all such rectangles is used as the measure. This concept can be extended to any
number of dimensions m to give the general hypervolume metric [13].

2.2 Generational Distance Indicator

In order to evaluate the convergence of the algorithms to the Pareto front we
adopted the generational distance indicator GD, which is defined by GD(A) =

1/|A|
(∑|A|

i=1 d
2
i

)1/2
, where di is the Euclidean distance between each solution

xi ∈ A and the nearest member of Pf .

3 Many-objective Optimization of the PDPTWSR

In this section, the two multi-objective optimizers used in this study for solving
the many-objective PDPTWSR are briefly described. The first is the well-known
ε-MOEA [2], which has been proved to be successful in a number of applications.
The second is the multi-objective evolutionary algorithm recently proposed by
Garćıa-Nájera and Gutiérrez-Andrade [3], hereinafter GN-MOEA, which is able
to find appropriate Pareto approximations to the related problem PDPTW.
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3.1 ε-MOEA

Deb et al. [2] proposed ε-MOEA, based on the ε-dominance concept introduced
in [8] that states: Let x,y ∈ Rm. Then, x is said to ε-dominate y for some ε > 0,
denoted as x �ε y, if and only if (1 + ε) · xi ≥ yi,∀ i ∈ {1, . . . ,m}.

In ε-MOEA, the search space is divided into a number of hyper-boxes and
diversity is maintained by ensuring that a hyper-box can be occupied by only
one solution. ε-MOEA randomly initializes a population. The non-dominated
solutions of are copied to an archive population. Two solutions are chosen as
parents: one is chosen from the population and one is chosen from the archive
population. One offspring solution is created using these parents. If the offspring
dominates one or more population members, then the offspring replaces one
of them (chosen at random). On the other hand, if any population member
dominates the offspring, it is not accepted. When both the above tests fail (that
is, the offspring is non-dominated to the population members), the offspring
replaces a randomly chosen population member, thereby ensuring that the EA
population size remains unchanged. For the offspring to be included in the
archive population, the offspring is compared with each member of the archive
using ε-dominance criterion.

3.2 GN-MOEA

Garćıa-Nájera and Gutiérrez-Andrade [3] proposed a problem-specific multi-
objective evolutionary algorithm (GN-MOEA) for minimizing three objectives of
the PDPTW simultaneously, namely the number of routes, the travel distance,
and the travel time. GN-MOEA uses an encoding of list of lists: a route is
encoded as a list and a solution as a list of routes. They use the non-dominance
sorting criterion [4] to assign fitness to individuals. Solution similarity is used as
a diversity measure. This is simply computed as the ratio of the number of arcs
that are common in two solutions to the total number of arcs traversed in both
solutions. This measure is used in the mating selection process, since one parent
is selected according to the diversity measure and the other is selected according
the fitness. These parents are selected by using the tournament selection method.
Crossover aims at combining routes from both parents, while mutation exchanges
transportation requests between routes, and removes transportation requests
from one route and inserts them into another.

4 Experimental Study

Our study has two main purposes. Firstly, to determine which of the two multi-
objective optimizers described in the previous Section has a better performance
on the problem at hand, and secondly, to perform a many-objective analysis
of the PDPTWSR. To this end, we carried out two sets of experiments. The
first set (RDT) considered the objectives number of routes (fR), travel distance
(fD), and travel time (fT), and the minimization of four combinations of these
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objetives, namely fRfD, fRfT, fDfT, and fRfDfT. The second set of experiments
(RDTP), took into account the three previous objectives plus the uncollected
profit (fP), and the minimization of five combinations of these four objectives,
namely fRfP, fRfDfP, fRfTfP, fDfTfP, and fRfDfTfP.

In order to have controlled experiments, we used the PDPTW benchmark
sets of Li and Lim [10], which include 56 instances of size N = 100, and are
divided into six categories: lc1, lc2, lr1, lr2, lrc1, and lrc2. Crossover and mutation
operators used in GN-MOEA were set also in ε-MOEA for fair comparison.
We ran both algorithms 30 times for each problem instance. The GN-MOEA
parameters were set to the values reported in [3]: population size = 100, number
of generations = 500, tournament size = 5, and mutation probability = 0.1.
These values were also set in ε-MOEA, plus the number of hyper-boxes = 100.

4.1 Analysis of the Hypervolume Indicator

To compute the hypervolume indicator, we require an appropriate reference
point. From the 60 Pareto approximations (30 from GN-MOEA and 30 from
ε-MOEA) for each instance, we took the maximum value for each objective, and
the reference point z was set 10% above each dimension’s maximum value.

For each instance and repetition, we took the non-dominated set and com-
puted the hypervolume covered by those solutions. Then, we applied a statis-
tical t-test (two-sample, one-tailed, unequal variance) to the two vectors of 30
hypervolume values, from the GN-MOEA and ε-MOEA, respectively, to test
the null hypothesis that data in the vectors are independent random samples
from normal distributions with equal means. The summary of the t-test results
are shown in Tables 1 and 2, for the sets of experiments RDT and RDTP,
respectively. The first main column of these Tables show the instance category
and the number of instances comprising that category. These Tables have one
main column for each combination of objectives, and each main column has two
subcolumns, corresponding to the number of instances in each instance category
for which non-dominated solutions from GN-MOEA (GN) and from ε-MOEA
(ε), respectively, covered a statistically larger hypervolume.

From Table 1 we can observe that, in the fRfD case, both algorithms per-
formed similarly, since for only three out of 56 instances there was a statistical
difference in the size of the covered hypervolume. For the remaining three combi-
nations of objectives, it is clear that GN-MOEA found non-dominated solutions
that covered a significantly larger hypervolume for more instances than ε-MOEA.

On the other hand, from Table 2 we can see that the non-dominated solutions
from ε-MOEA covered a significantly larger hypervolume for many instances in
the cases fRfP, fDfTfP, and fRfDfTfP, while the Pareto approximations from
GN-MOEA delimited a significantly larger hypervolume in more instances for
the cases fRfDfP and fRfTfP.

Overall we can conjecture that GN-MOEA has a superior performance over
ε-MOEA when objective fRfDfT are considered, however, when objective fP is
included, ε-MOEA outperforms GN-MOEA in many cases.
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Table 1. Number of instances for which non-dominated solutions from each optimizer
cover a significantly larger hypervolume for the set of experiments RDT.

Inst. fRfD fRfT fDfT fRfDfT
Cat. No. GN ε GN ε GN ε GN ε

lc1 9 1 0 3 1 1 0 2 0
lc2 8 0 0 3 0 2 0 2 0
lr1 12 0 1 5 0 10 0 5 0
lr2 11 0 0 6 0 10 0 5 1
lrc1 8 0 1 1 0 4 0 3 0
lrc2 8 0 0 6 0 6 0 2 0

Total 56 1 2 24 1 33 0 19 1

Table 2. Number of instances for which non-dominated solutions from each optimizer
cover a significantly larger hypervolume for the set of experiments RDTP.

Inst. fRfP fRfDfP fRfTfP fDfTfP fRfDfTfP
Cat. No. GN ε GN ε GN ε GN ε GN ε

lc1 9 0 3 3 2 9 0 3 3 0 9
lc2 8 0 5 5 0 8 0 1 4 0 5
lr1 12 0 3 0 7 0 9 0 12 0 12
lr2 11 0 6 5 0 10 0 0 11 0 9
lrc1 8 1 5 2 3 0 5 0 7 0 8
lrc2 8 0 5 3 0 6 0 0 8 0 7

Total 56 1 27 18 12 33 14 4 45 0 50

4.2 Analysis of the Generational Distance Indicator

Since the optimal Pareto front is not known for the benchmark instances, for
computing GD we used, as a reference set, the non-dominated solutions resulting
from the union of all the approximation sets to Pf obtained by each algorithm
at the end of every run. In order to analyze the difficulty of PDPTWSR when
objectives are added we used the comparison of both algorithms to get use-
ful insights about its difficulty. More specifically, if the difference between the
performance of the optimizers vary with the number of objectives, that would
indicate that PDPTWSR’s difficulty vary with the number of objectives.

After computing GD for each approximation set obtained by both algorithms
we carried out the Wilcoxon rank-sum test (two-sample, one-tailed) to deter-
mine which algorithm yielded the smaller generational distance. We tested the
alternative hypothesis that the mean of GD generated by optimizer A is less
than that of B. In this test we employed a significance level of 5%. In Table 3
we present a summary of the statistical tests showing the number of instances
in which each MOEA achieved a significantly better GD value. For the set of
experiments RDTP in Table 3 we can observe that GN-MOEA outperformed
ε-MOEA in most of the instances. Interestingly, the result for fRfP does not
agree with that of the hypervolume. By analyzing some approximation sets we
realized that in some instances, although GN-MOEA generated solutions very

57

The Pickup and Delivery Problem: a Many-objective Analysis

Research in Computing Science 104 (2015)



Table 3. Number of instances for which non-dominated solutions from each optimizer
has a significantly better GD for the set of experiments RDTP.

Inst. fRfP fRfDfP fRfTfP fDfTfP fRfDfTfP
Cat. No. GN ε GN ε GN ε GN ε GN ε

lc1 9 9 0 9 0 9 0 0 9 0 9
lc2 8 7 0 8 0 8 0 0 2 0 5
lr1 12 12 0 3 3 4 0 0 12 0 12
lr2 11 11 0 9 0 11 0 0 9 0 9
lrc1 8 8 0 7 0 6 0 0 7 0 7
lrc2 8 8 0 8 0 8 0 0 7 0 7

Total 56 55 0 44 3 46 0 0 46 0 49
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near to the reference set, it did not cover some solutions in the middle of it. In
order to illustrate this situation, we present Figure 1, in which solutions with
7, 8 and 9 routes were not found by GN-MOEA. In this approximation sets,
GN-MOEA achieved a better GD (4.7 vs 5.15). However, with the same outputs,
ε-MOEA overcame GN-MOEA in terms of hypervolume. The explanation is that
the hypervolume contribution of those middle solutions was more important
than the hypervolume advantage produced by solutions close to the reference
set. Regarding the difficulty of PDPTWSR as the number of objective increases
we have the following observations. In some comparative studies, ε-MOEA has
shown a good performance in many-objective optimization problems. That is,
its convergence ability degrades very slowly when more objectives are added.
Therefore, we expect ε-MOEA to maintain a similar performance for every
number of objectives. The results show that, regarding both hypervolume and
generational distance, GN-MOEA outperformed ε-MOEA in most of the problem
instances with 2 and 3 objectives. In contrast, ε-MOEA obtained better indicator
values in fDfT fP and fRfDfT fP . We argue that GN-MOEA’s convergence
ability was affected by the additional objective. Therefore, this could indicate
that the difficulty of PDPTWSR increases as more objectives are added.
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4.3 Conflict among Objectives of PDPTWSR

One can expect a natural conflict between uncollected profit (fP ) and either
time (fT ) or distance (fD). However, at first sight, there is no conflict between
distance and time. In order to estimate the conflict among all pair of objectives
we employed the Spearman’s rank correlation coefficient (which value is in
[−1, 1]). That is, a coefficient value close to −1 means that one objective grows
while the other decreases. For this purpose, we test the alternative hypothesis
(significance value of 0.05) that the Spearman’s rank coefficient is negative for
a pair of objective values. The results show that, according to correlation, there
is conflict between time (fT ) and distance (fD) for many of the instances: 0,
3, 9, 11, 7, 8 for instance categories lc1, lc2, lr1, lr2, lrc1, lrc2, respectively. In
the other hand, there is no conflict at all between fR and either fT or fD, and
there is conflict between fP and fR, fD, fT in all instances. In order to illustrate
this situation we present Figures 2 and 3 in which the Pareto front of the best
approximation of Pf is plotted.

5 Conclusions

In this paper we have analyzed some properties of the many-objective PDP,
namely the change of difficulty when the number of objectives is increased, the
conflict degree between each pair of objectives, and whether the difficulty of
particular objectives decreases due to the change of the fitness landscape. To
this end, we employed two multi-objective optimizers: the well-known ε-MOEA,
which has been successful in a number of applications, and the recently proposed
GN-MOEA, which showed improved performance over a popular optimizer on
some benchmark instances of the PDP with time windows. We ran two sets
of experiments: the first to optimize different combinations of the objectives
number of routes, travel distance and travel time, and the second to optimize
different combinations of the previous objectives plus the uncollected profit.

Our analysis is threefold. First, we computed the hypervolume covered by the
non-dominated solutions found by both algorithms. For the first set of experi-
ments, we found that GN-MOEA has a better performance over ε-MOEA in three
out of four combinations of objectives, and, for the remaining case, there is no
difference between both algorithms. For the second set of experiments, ε-MOEA
outperformed GN-MOEA in three out of five combinations of objectives, and
GN-MOEA has a better performance in the remaining two cases.

Secondly, we computed the generational distance the non-dominated solu-
tions found by both algorithms. In this case, GN-MOEA solutions have a shorter
generational distance than those from ε-MOEA for all four combinations of
objectives in the first set of experiments and for three combinations of objectives
in the second set, and solutions from ε-MOEA have a shorter generational
distance for the remaining two combinations of objectives in the second set.
These results are consistent with those from the hypervolume, except for the
combination fRfP, for which ε-MOEA found solutions with a larger hypervolume
and GN-MOEA solutions have a shorter generational distance. After analyzing
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these results, we can argue that this situation is due to that, although GN-MOEA
generated solutions very near to the reference set, it did not cover some solutions
in the middle of it.

Finally, we analyzed the conflict between objectives. We found that there is
no conflict at all between fR and either fD or fT, however objectives fD and fT
are in conflict in many instances, and objective fP is in conflict with the other
three objectives in all the 56 instances.

After these interesting results, we believe that we can continue with our
research by investigating why ε-MOEA is not able to find better solutions than
those from GN-MOEA for the first set of experiments, that is, what are the
properties of GN-MOEA that make it a better solver when only objectives fR,
fD and fT are considered. To further analyze the many-objective performance of
both algorithms, we are planning to include at least two additional objectives.
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