Improving Performance of Particle Tracking
Velocimetry Analysis with Artificial Neural
Networks and Graphics Processing Units

Rubén Herndndez Pérez, Ruslan Gabbasov, and Joel Suarez Cansino

Universidad Auténoma del Estado de Hidalgo,
Centro de Investigacién en Tecnologias de Investigacién y Sistemas,
Cuerpo Académico de Computacién Inteligente,
Mexico

rub3n.hernandez.perez@gmail.com

Abstract Flow analysis has a wide range of applications both in en-
gineering and science, and many techniques have been developed over
the years that allow the data extraction and measurement of the flow
dynamics. In particular, Particle Tracking Velocimetry (PTV) techniques
have shown good results when combined with Artificial Neural Networks
(ANN) techniques, especially using Self-Organizing Maps (SOM). In
order to improve the performance and reduce the time consumption
of proposed SOMs for PTV analysis, the parallel nature of modern
architectures such as Graphics Processing Units (GPU) can be used.
In this paper we describe how the GPU architecture can be exploited for
the implementation of the inherent parallelism of a SOM for PTV anal-
ysis, and measure the performance obtained with different optimizations
techniques. We show that it is possible to gain a speedup of ~ 5 when
running in parallel.

Keywords: Particle tracking velocimetry analysis, artificial neural net-
works, GPU

1 Introduction

Flow visualization techniques are used to reveal the fluid motions and allow to
study the complex phenomena such as turbulence. Techniques such as Particle
Tracking Velocimetry (PTV) give us quantitative two-dimensional information
about the velocity field by extracting the positions of illuminated particles sus-
pended in the flow and tracing their motion between two or more frames. This
information can be used later to compute other flow quantities such as vortic-
ity [9].

The applications of PTV cover a wide range of areas of engineering, science
and industry [3]. Some examples are found in medical applications [1], [5], where
the PTV analysis provides information for validation and testing of models and
procedures that can be used later for surgical treatment of arteries and veins.

pp. 71-79; rec. 2015-05-23; acc. 2015-07-15 71 Research in Computing Science 104 (2015)

Rubén Hernandez Pérez, Ruslan Gabbasov, and Joel Suarez Cansino

This kind of studies demand techniques and tools that enable data extraction
from the images of PTV and more important, these tools must have response as
fast as possible for PTV analysis, which can be critical, especially in cases when
a large number of images is obtained in real time.

The PTV technique can be divided into two steps. First is the image capture
and preprocessing where the positions of tracers are determined. The second
one is the position match of the tracers between the images (pairing) and
measurement of their displacement. Here we study only the second step.

In order to perform an efficient particle tracking when the number of tracers
is very large, i.e., the field is crowded, Artificial Neural Networks (ANN) have
been proposed as an efficient way to achieve a good level of accuracy [2] and,
in particular, Self-Organizing Maps (SOM) have demonstrated to give excellent
results [7] for such images. There have been some improvements to the Labonte’s
algorithm by adding a distance-dependent schema for updating the weights for
the neurons [6] and by adding a Delta-Bar-Delta rule to the net to reduce the
computation time [4].

Many ANNs, including SOMs, are already implemented in software and
there are many available libraries that can be used [8]. The advantage of such
implementations is that they can be directly invoked and used as a black-box,
nevertheless, they are not necessarily optimized for custom problems and hard-
ware. The problem of performance can be somehow mitigated by using modern
microprocessor architectures that include set of instructions for specific tasks and
the many-core architecture. Another way to improve the performance is by using
special hardware implemented with digital or analogue circuits representing the
neurons, but there are many issues yet to be solved like poor flexibility to change
the net structure and the way to send and retrieve information from it.

In this work we focus on modern hardware that allows parallel execution,
such as Graphics Processing Units or GPUs, the multi-core architecture that
offers flexibility and is able to perform arithmetic operations, which represents a
cheap alternative to the CPUs. The main characteristic of such architecture is the
number of computing cores available which is much larger than any other com-
mercial microprocessor currently available [8]. For programming these devices
NVIDIA Corp. provides proprietary NVIDIA Toolkit, which is a set of tools,
including it’s C/C++ compiler and CUDA libraries. This tool is distributed for
free and allows to exploit all supported GPU capabilities.

The multicore architecture allows to take advantage of the parallel nature of
the SOM by implementing it on the GPU.

2 A SOM for PTV Analysis

The Labonte’s original algorithm [7] starts with the coordinates vectors of parti-
cles in two consecutive frames denoted by z; (¢ =1,...,N) and y; (j =1, ..., M),
according to this vectors, two sub-nets of N and M neurons are created. Each
neuron have two weight vectors denoted by v; and w; whose values at the
beginning are assigned to x; and y; respectively. First the stimulus vector wv;

Research in Computing Science 104 (2015) 72

Improving Performance of Particle Tracking Velocimetry Analysis with Artificial Neural ...

from the first layer is present to the second layer, then a winner neuron w, is
selected as the one closest to v;. Having this, the neurons in the second layer are
subjected to the next displacement.

AW;(c) = o (v; — we), i=1,..M (1)

Where a € [0,1] is an scalar value between 0 and 1 given by the condition
a; = aif neuron j € Sc(r) and o; = 0 if not. In the case of the Ohmi’s algorithm
[6] the condition changes outside the radius where the displacement is modified
by the distance-dependent Gaussian function:

a* exp{—(jwe —w;| —7)*/(2r*)} (2)

For both cases, S.(r) is the radius of the closed circle centred on the point
ye. BEach time the first layer presents the weight vectors as stimuli for the second
layer, the second layer is then updated according to the next operation.

N
wi —wi+ Y Awj(e;), j=1,..,M (3)
i=1
And in the same way, in the next step, the second layer presents the weight
vectors as stimuli for the first layer and update its values with the same formula
just in the opposite direction.

M
Ul%’L}Z‘FZA’Ul(C]), Zil,,N (4)
j=1
At each step, the radius 7 of the circle, within which the neuron weights are
changed, is decreased and the amplitude « of the weight translation is increased
according to the following equations respectively:

rpr, 0<pB<1 (5)

a<+—a/f (6)

These steps are iterated until r reaches a given value of 7y, which should
be small enough to cover only the winner neuron. The value of § is an scalar
between 0 and 1. Finally, the matching between particles in the frames is done
by a last nearest-neighbour check with a small radius e.

3 Implementation

The need for high performance computing through the use of GPU, is based on
the complexity of the algorithm itself, since it involves two subnets interacting
with each other every iteration, and each of them has as many neurons as
particles in the corresponding frame. The operations performed by all neurons

73 Research in Computing Science 104 (2015)

Rubén Hernandez Pérez, Ruslan Gabbasov, and Joel Suarez Cansino

of v; against all neurons of w; are executed in both direction each iteration,
implying an exponential behaviour. Besides the number of iterations required
by the net depends on the scalar value of the compression factor § and the
boundaries delimited by and 7 as will be shown in section 4.

In order to show the improvement that can be achieved by implementing the
proposed SOM in a GPU, we have three approaches. The first one consists in
use of the displacement of neurons in equation 3 and simply transforming the
loop for processing all neurons (wj; in the first step and v; in the second step) in
parallel for each neuron. This means unrolling the nested loop shown below:

for (j=0; j<M; j++) {
for (i=0; i<N; i++) {
Calculate displacements...
b
3

Then a parallel form in CUDA, where the code is executed once per neuron
will be:

j = blockDim.x * blockIdx.x + threadIdx.x;
if (G<M) {
for (i=0; i<N; i++) {
Calculate displacementes...
3
}

Here it is necessary to add a condition ¢ < N in order to guarantee that all
neurons have one thread assigned.

This quick approach provides substantial speed enhancement in comparison
with the traditional serial code and parallel implementations using OpenMP, but
it doesn’t exploit all the capabilities of the GPU. The architecture of a GPU is
composed of blocks of threads that can be referenced by a 9-dimensional index
and with these is possible to establish a mapping for all operations between the
neurons on v; and w;. To illustrate how this can be done, we divide the algorithm
in 5 basic steps as shown in Fig. 1.

There are two steps (Calculate Distances and Calculate Displacements) that
involve calculation of values between each neuron of v; and each neuron of w;. In
the first approach, these operations are done by executing in parallel a serial loop
for each neuron of v;. In the new approach the GPU can execute all operations
as single threads and is possible for each thread to have two indexes to make
reference both to v; and to w; and a third index to identify the calculation as
unique.

idvi threadIdx.x + blockIdx.x * blockDim.x;
idwj threadIdx.y + blockIdx.y * blockDim.y;
idviwj = idwj + idvi * N;

Research in Computing Science 104 (2015) 74

Improving Performance of Particle Tracking Velocimetry Analysis with Artificial Neural ...

Calculate
Distances
Reduce Winners
by Neuron xi *

Calculate
- Displacements
Reduce
Displacements by 4—‘

Neuron yj

Apply Final
Displacement

Fig. 1. Steps involved in the iterations over the net. Based on equations 1, 3 and 4, is
is possible separate the calculations in well defined segments.

It is necessary to allocate a space of memory of size N x M to store all
calculations between sub-nets and after it is necessary to perform two reduction
operations, the first one searching for winners at each neuron v;, and the second
one calculating the cumulative weight displacement for each neuron in w;. With
this approach is possible to obtain a speedup of 3.2X just by calculating all
distances and displacements in one step according to GPU capabilities. Note
however, that the reduction operations were not parallelized, leaving room for a
further improvement.

The parallel reduction is easy to implement but hard to get it right. As an
example of optimization, we changed the the serial implementation by a parallel
one as a binary three shown in Fig. 2.

LT 1

- 1]
ST REE
l T
time @, [
)
M*@‘,
D
—
(@ (b)

Fig. 2. Difference between simple serial reduction (a) and parallel reduction (b) imple-
mentations. It can be easily noted that the parallel reduction requires less execution
time.

With this strategy we get a cumulative speedup of 4X with respect to the

75 Research in Computing Science 104 (2015)

Rubén Hernandez Pérez, Ruslan Gabbasov, and Joel Suarez Cansino

original implementation, and as we can observed in Fig. 2, the binary three
reduces the number of steps by executing parallel operations at deep nodes of
the three. Here is a part of the code implemented in C code that performs this
task:

idvi
idwj

threadldx.x;
blockIdx.x;

originalld = idvi + idwj * N;

for(i=512; i>0; i>>=1) {
if(idwj < i) {
newld = idwj + (idvi + i) * N;
Add operations to reduce elements...

}

This code reduces blocks of 512 elements at once.

Finally, the last improvement has relation with the calculations of weight
displacements. For the Labonte’s algorithm it is a simple condition whether to
apply or not a displacement based on r, while for Ohmi’s algorithm this condition
changes and depending on r value, the displacement is applied by the Gaussian
function in equation 2. To improve performance of the net, the latter can be
replaced by a function that describes the similar behaviour, but avoiding the if
condition.

In this work we chose a sigmoid function as follows:

ax*x(1—1/(1+exp{—(Jwe — w;| —) * A})) (7)

In this new equation, the r value is used to displace the function from the
center and adds a new parameter A that can be used to control the smoothness of
the curve described by the function. This final approach by replacing conditions
in CUDA code, improves performance up to 5.1X with respect to the original
implementation.

4 Experiment

All implementations were tested using synthetic images of laminar flow contain-
ing 1024 particles in each frame. The performance was measured by changing
the value of 3, which due to the boundaries defined by r, r; and equation 5
affects directly the number of performed iterations.

The total number of iterations performed by the net, can be considered as
twice the operations performed (see Fig. 1). Each iteration updates weights in
both sub-nets vi and wj, so if, for example, the net performed 135 iterations, it
actually performed 270 updates over the weight vectors of the 1024 neurons.

Research in Computing Science 104 (2015) 76

Improving Performance of Particle Tracking Velocimetry Analysis with Artificial Neural ...

Fig. 3. Example of synthetic image of laminar flow with two frames overlapped.
Particles in dark gray are the positions of the first time frame, and light gray dots
are the positions of the second frame.

r |rf| B |iterations
100(0.1{0.70 20
100(0.1{0.75 25
100{0.1{0.80 31
100(0.1{0.85 43
100(0.1{0.90 66
100{0.1{0.95 135

Table 1. Values of parameters used to measure the performance of the net. The number
of iterations depends on the initial radius r, the final radius 7y and the parameter 3.
The table shows only the 6 most significant values used for the test. The radius units
are in pixels.

77 Research in Computing Science 104 (2015)

Rubén Hernandez Pérez, Ruslan Gabbasov, and Joel Suarez Cansino

The execution time was measured using CUDA events instructions as shown
below. It is possible to use CPU or operating system timers, but measurements
can be biased by external processes and operating system thread scheduler. Using
CUDA instructions eliminate such problems when measuring the GPU execution
time. The CUDA event instructions are essentially a GPU time stamp that is
recorded at a specified point in execution time:

cudaEvent_t begin, end;

cudaEventCreate (&begin) ;
cudaEventCreate (&end) ;

cudaEventRecord(begin, 0);
Iterations over the net...

cudaEventRecord(end, 0);
cudaEventSynchronize (end) ;

cudaEventElapsedTime (&elapsedTime, begin, end);

Finally, the GPU time was measured for each implementation described
above and for different 8 values as a total time used to computation and to
copy and retrieve data to/from the memory since we found that for considered
size of subnets (1024) the latter does not impact the final performance.

5 Results

The experiment with 4 implementations of the SOM algorithm, shows improve-
ments of 3.2X, 4X and 5.1X in speedup respectively as compared to serial CPU
version (see Fig. 4). The first approach shows that high speedup can be obtained
by executing operations between frames at the same step, while the second was
obtained by parallelizing the inner loop.

Finally, using a Sigmoid function in order to avoid taking decisions as im-
plemented in original Labonte’s and Ohmi’s algorithms, allows to fully exploit
SIMD architecture of the GPU hardware.

6 Conclusions

A GPU can be used to improve performance in a SOM for PTV analysis, however
the speedup obtained heavily depends on parallelism and optimisation of the
code. The easiest way is to take a serial code and transform it to a parallel
one, but full capabilities of a GPU can be exploited by using optimizations of
code, using indexes available for identifying threads and avoiding divergence
statements. The algorithms from Labonte and Ohmi have proven to be efficient

Research in Computing Science 104 (2015) 78

Improving Performance of Particle Tracking Velocimetry Analysis with Artificial Neural ...

10

——%—— 5. Parallel -l st impr. = = 8= = 2nd Impr. -+ =& — - Sigmoid

time/seconds

0.01
010 015 020 025 030 035 040 045 050 055 060 065 070 075 08 085 090 095

B/dimensionless

Fig. 4. This chart shows the execution time in seconds for each implementation and
each value of (3 tested.

to deal with the problem of pairing particles, but the functions used to displace
weights of neurons can be expressed in terms of a simpler function instead a
condition, and it is possible to keep control of the radius and smoothness of the
displacements in a more efficient way.

References

1. Grus, T., et al.: Particle image velocimetry measurement in the model of vascular
anastomosis. Prague Medical Report 108, 75-86 (2007)

2. Tan Grant, X.P.: An investigation of the performance of multi layer, neural networks
applied to the analsis of piv images. Experiments in Fluids 19, 159-166 (1995)

3. J. Hassan, H.Z.: Effects of vortex generator on junction flow. Applied Sciences and
Technology (IBCAST) pp. 449-452 (2015)

4. Joshi, S.R.: Improvement of algorithm in the particles tracking velocimetry using
self-organizing maps. Journal of the Institute of Engineering 7, 6-23 (2009)

5. Kabinejadian, F., et al.: Particle image velocimetry (piv) flow measurements of
carotid artery bifurcation with application to a novel covered carotid stent design.
IFMBE Proceedings 39, 1441-1444 (2012)

6. Kazuo Ohmi, A.S.: Cellular neural network based ptv. 13th Int Symp on Applica-
tions of Laser Techniques to Fluid Mechanics pp. 26-29 (2006)

7. Labonte, G.: A new neural network for particle-tracking velocimetry. Experiments
in Fluids 26, 340-346 (1999)

8. Verber, D.: Implementation of Massive Artificial Neural Networks with CUDA.
University of Maribor (2012)

9. Westerweel, J.: Digtal Particle Velocimetry, Theory and Application. Delft Univer-
sity Press (1993)

79 Research in Computing Science 104 (2015)

