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Abstract. The need for the search, detection and rescuesastér survivors
arises in many emergency situations in military eivd applications. Suppose a
number of people are trapped in ruins after anhgaeke or tsunami. Their
medical condition depends on their location, déectime and the time of the
rescue operation. In order to efficiently detect grerform the needed rescue
operations, a network of wireless sensors is uggchwprovide acoustic, seismic,
electromagnetic, gravimetric and other informatibime information is processed
automatically to yield prior probabilities of lot@t and expected rescue times
for each potential target. The acquired informafiom the sensors is imperfect
because under extraordinary and severe circumsatvee types of errors may
occur: (i) a "false-negative detection test” — st a case when a target is
overlooked during the test; and (ii) a "false-positdetection”, or "false alarm"
— when a not-a-target location is wrongly classifes a sought target. Therefore,
non-zero probabilities of overlooking a hidden &rgnd a "false alarm” exist.
We suggest a two-phase solution to the problenchéduling detection and
rescue operations. First, the disaster area igelivinto sub-areas and available
rescue teams and sensors are assigned. Secohddalsds found for the rescue
teams to perform the rescue operations (in payalge seek to find the best
coverage of the disaster sub-areas served byeadsams and to schedule the
search-and-rescue operations in each sub-area mimimizing the search-and-
rescue time and maximizing the number of saved Wighin a given search time
limit. The problem is formulated as a non-standawd-stage assignment /
scheduling problem and a fast combinatorial reaktalgorithm is suggested.

Keywords: disaster management, detection-and-rescue problieatess sensor
network, imperfect inspections, best coverage,dulivgg, fast on-line algorithm

1 Introduction

The need for search, detection, and rescue (DAR)safster survivors arises in many
emergency situations in military and civil applicais. Suppose that a large number of
people are trapped in ruins after an earthquaksyursami wave, or a terrorist attack.
Their medical condition and survival probabilitidspend on their location, the time
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needed to locate them and the evacuation (restue) For DAR operations to be
efficient, a computer-aided network of wirelessssea of different types is used which
provide acoustic, seismic, electromagnetic, gratiimand other information about the
targets (see [6, 11, 17]).

Real-time monitoring and quick response are thet mesential requirements in the
design of an emergency response system. Diffeypestof sensors are used together
and the collected information is incorporated iatwireless sensor networks (WSNSs)
thus allowing for the communication between botisses and human rescue teams. For
example, temperature and movement-detection seasorsed to monitor the location
of people, satellite cameras can track the spré#oeadisaster and depict the disaster
area map while ultrasonic sensors measure the tartgegets in the environment and
report dynamic changes of maps due to the chanfdsuiti structures through
destruction of debris. The use of such heterogengoals must be supported by
innovative planning or scheduling tools in ordeexploit and integrate the capabilities
of each sensor and provide an optimal use of allae resources.

In this work, we consider scenarios that requitgalimg and identifying multiple
stationary and dynamic targets. We assume thermres® a relevant communication
infrastructure enabling the command center andréseue teams to continuously
exchange information. In order to plan an effecteam deployment over the search
area, it is necessary to rapidly gather as mudarrmition as possible about the targets
and the area, and use this information to defiime g@arch-and rescue mission plans. A
mission plan consists of a sequence of actiong {eebformed by an agent for a certain
time duration as defined by environmental factord geographical locations.

Mission planning is modeled as a mixed integemdim@ogramming problem (MILP)
in which the model simultaneously allocates preufisub-areas of a disaster area to
be explored and specifies the schedule of theractimat each agent should follow. The
resulting plans guarantee optimal results for tearch activities. A number of
constraints are included to model cooperation amthectivity relationships among
agents (sensors and human rescue teams). For exanje beginning of the search
process, the agents are uniformly spread over réme avhile in later stages they are
focused on specific subareas according to impogtanc

Initially, the data from the sensors is collectgdi®e network and integrated to define
prior probabilities of location, the damage scatel @xpected rescue times for each
potential target. The problem presented in thisspapn be partitioned into two stages.
First, the disaster area is divided into sub-aasakavailable rescue teams are assigned
to each sub-areas in which they will perform ingtlat their DAR missions. At the
second stage, a detailed schedule of operatigransed ahead for each rescue team.
Notice that the detection-and-rescue operatiortheatsecond stage are implemented
simultaneously by several rescue teams. The gdal ifnd the best coverage of the
disaster area by mobile rescue teams and to sehdukisearch-and-rescue operations
in each sub-area in order to minimize the searchragscue time and maximize the
number of saved lives within the given limits oktlearch-and-rescue time. This
problem is a natural extension of similar searctiHascue problems studied in [7-9, 11,
13, 16].

The automatic information-gathering system gathiefsrmation from sensors
scattered over a geographical region to help tkeure teams to find the targets in
minimum time. The inspections are imperfect becausder uncertain environmental
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circumstances, two types of errors may occur: (faise-negative” detection test — a
target object is overlooked during the test; add(ifalse-positive” detection or a "false
alarm”, which wrongly classifies a clean locatiamaasought target. Hence, non-zero
probabilities of overlooking the hidden target adlas that of a "false alarm" exist. We
propose to model the DAR problem as a schedulinglem involving several search
teams working in parallel, and subject to time/krtdand probabilistic constraints. The
general problem of selecting the best scheduld”ihald thus, the proposed solution is
an approximation or an “almost-optimal” solution.

The remainder of the paper is organized as folldnvSection 2, we provide a review
of related works and approaches for using smasoseretworks to detect/rescue hidden
objects while focusing on detecting and rescuinguwhan survivors. In Section 3, we
provide a formal formulation of the problem and gee a mathematical model. In
Section 4 we propose a solution using a fast dhgaori (without significant
computational load). A numerical example is giversection 5 and Section 6 contains
a summary along with future research directions.

2 Related Work

Planning of search-and-detection operations has tesearched thoroughly in the area
of operational research and artificial intelligentd@e pioneer work done by Bernard
Koopman done during World War Il aimed to providficeent methods for detecting
hidden submarines. See [2], [15] and [19] for ailled survey and the bibliography of
the discrete search literature. In recent yeaesptbblem of planning and scheduling
of detection operations has become critical intlgftincreasing growth of natural and
human-made disasters and the usage of a WSN hambemopular. A WSN is an
advanced technology for collecting diverse datenfraultiple sensors. A typical WSN
system is distributed within the sensor field andsists of a number of sensor nodes,
such as seismic, acoustic and magnetic anomakes[1$for a comprehensive survey
regarding the main factors influencing the WSN gesirhe WSN collects thousands
of raw data and works as a centralized or decérdhfusion system (see [18]). In the
centralized case, the data is collected by indaficensors and sent through the sink
node to a central dedicated fusion node, task nenagle for processing while in the
decentralized case the information is collected amalyzed by a set of autonomous
devices.

We consider a situation where the basic functidnthe WSNs are to monitor and
control environmental parameters related to theedlien-rescue and collectively
transfer the data obtained through the networlkcierdral location. In WSNs, the mobile
agents are added into the system to improve ifeqpeance and act as automatic carriers
of data. [4] provides more examples and detailsnoflern applications of WSNs
including battlefield surveillance, detection ofeemy intrusion and detection and
rescuing of hidden targets. Many search-planniggrahms are based on a cellular
partitioning of the disaster area (see [7] andréfierences within). In [3], a multi-scale
grid is used for representing the environment. [$@]died the usage of UAVs
(unmanned aircraft vehicles) for DAR missions. @tlesearch has studied the use of
autonomous teams of robots for DAR (see [14]). MihBdels has been successfully

11 Research in Computing Science 104 (2015)



Boris Kriheli, Eugene Levner, Michael Bendersky, and Eduard Yakubov

used in search planning problems and mission aseigh([5]). An advantage of a MILP
formulation is that, given exact input data, aniropt solution can be provided.
Compared to latter works, we put an emphasis ompdnallel work of several search-
and-rescue teams and solve both task allocatiosermtiuling problems.

To conclude, we consider a different objective fiorc and corresponding
mathematical formulations of the problem. This peabis a natural extension of similar
search-and-rescue problems studied in [7-9, 1116B,0ur contribution is threefold:
(i) a new two-stage decomposition methodology pianiing the initial mission planning
problem into an assignment and scheduling compsrz@mied to enhance the efficiency
of DAR missions performed by several teams of nétew agents (sensors and human
teams); (ii) a novel generalized assignment prokliesed at the first stage) including
disjunctive and resource constraints in the contdxDAR missions; (iii) a novel
scheduling problem (of the second stage) and tlsgyuleof a new fast scheduling
algorithm.

3 Problem Description and Mathematical For mulation

As said above, the goal of the present study isfol First, we find the best coverage
of the disaster area by a mobile rescue teamssaednd, we optimally schedule the
search-and-rescue operations in each sub-areadér t minimize the search-and-
rescue time and maximize the number of saved lwitisin the given limits of the
search-and-rescue time. At the first stage, thastks area is divided into sub-areas and
available rescue teams are assigned to the disafteareas in which they will perform
in parallel their DAR missions. At the second steayéetailed schedule of operations
is planned ahead for each rescue team. The DARatipes at the second stage are
implemented simultaneously by several rescue teams.

3.1 Thecoverage of the Disaster Area

The planning process starts with discretizing thevikn disaster area into a set of
squared environmental cells representing the $péiments that should be served by
the available WSN and the rescue teams. Withostdbgenerality, the disaster area is
decomposed into a uniform cell grid, the cells’tseing denoted b, |A| =n. In this

simple, but effective scenario, the disaster aseaniformly partitioned in as much
equal sub-areas as possible within the available teserve and personnel resources.
In real-world scenarios, the disaster area is lsireggular and cluttered; we represent
the non-uniform effect on both mobility/effectivesseof the rescue teams, on the one
hand, and sensing of the WSN throughout the fieidthe other. For this purpose, we
assume that the total number of available humangéa known and equalsl while
the total number of available sensors is denotesl .by

We are now ready to formulate the area coveragapig problem as a generalized
assignment problem with resource and precedencaraots. As will be seen next, the
problem is a special case of the MILP class.
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Define, fiy - performance effectiveness function, corresponding human rescue
teamh h=1,2..m assigned to perform the detection-and-rescue onissin cellj ,

j=12.n f; is characterized by the expected number of detfszteed human lives

during performing the DAR mission (in cejl) which, in turn, depends on the local sub-

area characteristics, the agent skills and thecke@ime. Therefore, the entire
performance of the mission planning for the effecttoverage by the agents strictly
depends on the allocation of the agents to theaseits. These characteristics are
estimated by the rescue/evacuation manager bastt atata provided by the WSNs.
This issue is particularly relevant in the casehef heterogeneous sensors and teams
working simultaneously (“in parallel”). We take dntaccount disjunctive conditions
stating that each cell can be served by a humamaed/or by an automated device, like
a mobile robot or an unmanned aerial vehicle UAk&cBdence relations are imposed
according to which, in any cell, first the sensoeasurements are to be performed, after
which human teams are able to start their rescasion.

In addition, defineB and T the total budget at hand and the total time forDiAd&R

operation respectively and By, t,, and d,; the cost, the required time, and sensor cost
required to perform a DAR in cell by teanh . Also, let k; be the number of rescue

teams in sub area (can be larger than 1). Finally, le¢; and Y be binary variable
defined as follows:

X = 1 rescue tearn assgined to ¢t
"o else

and

Y. =

{1 sensos is assgined to ge
el

0 else

Then the constrained multi-agent coverage problemMACP) can be formulated as
presented in (1)-(7).

maxy > f,, 0Ox,
h=1 j=1 !
subiject to
m n
D Xy M (1)
h=1 j=1
> > ¢, Ox,, B (2)
h=1 j=1
m n
S ¥ d, oy, sc (3)
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Z Z ty, DXy =T (4)
h=1 j=1
> X, < k| (5)
h=1
> ox, =1 (6)
h=1
xhjsykj,Dk,h,j (7)

X Y O {0,1} .0k ,h,j,i

The first constrain is immediate since there io@ltof M teams while (2)—(4)
represent the total budget of the human teamgapthebudget of the WSN system and
the total time given to perform the rescue operai(6) follows from the definition ofjk
and (6) corresponds to the fact that every reseaim should be assigned to a sub area.
Since sensor measurement must precede the resssiomin all sub-areas, we have (7).

The presented generalized assignment problem wiéitedence and resource
constraints is a special class of the MILP probl@ve. have used the MILP solver (a
commercial optimization package called GAMS) anthied an optimal solution in

under 5 minutes for small and medium size instdme< 20,n <100).

3.2 The Scheduling of Detection-and-Rescue Operationsin Each Sub-Area

After completing phase 1, i.e., assigning the agémthe different sub area (cells) we
can continue to phase 2 and define the sequendeteftion-and-rescue operations.
When defining the sequence of operations, the mgsdrtant goal is to maximize the
number of saved human survivors (targets) and phetection of property.

We consider the following scenario. The targets dustered, that is, located in
groups of linked sites (cells) where the targetsesch cluster are processed
simultaneously while each group is inspected asdugd non-stop from one cluster to
the other. Since the coverage of the area intadfis is sufficiently fine-grained, we
may assume that each cell contains one targehgambst). If the number of rescue
teams isK (known in advance since it is defined by the reseaonstrain), a cluster of
K targets can be processed simultaneously. Attsiestiep we determine the cluster of
size K that contains the maximum of expected nurobeptential survivors in its cells
(and will be processed by K rescue teams). Afterfitst cluster is processed, tie
teams are assigned to the next cluster (againaicamy K targets). The targets are

detected and rescued until the given time resdryis exhausted, or all targets are

discovered and saved. The problem is to efficiesifiect and rescue the targets so as to
maximize the possible performance (the number véddives) of the detection-and
rescue mission.

For simplicity, we consider the following speciabe of scheduling the human rescue
teams, the scheduling of automated search teantsea@igeneous smart sensors being
handled along the same line. Any inspection of @ll/(either containing the target or
not) is imperfect. This means that a prior probgbi; of a false alarm and a prior
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probability 5 of overlooking the target are given. This implitkat each cell may be
examined more than once. It follows that a detacsequence will be finite but
repetitions of the same cells are possible. Eastusteam performs a set of sequential
operations in order to identify and rescue thegarghe times and expected efficiency
of lifesaving during the operations being givere tipal of the detection and rescue
process is to determine a search strategy whichegmie team employs to locate and
rescue the maximum number of targets within themreserve of detection-and-rescue
time.

A disaster area contains m squared sub-areas. &aatontains mi potential target
locationsm<m, i=1,2,...,.N and is characterized by the following known partrse

— p, - prior probability that location i contains thedat;

— . - prior probability of a "false alarm" , or a falpesitive outcome, the

I
conditional probability that an inspection declatest a target is found in céll
whereas, in fact, this location does not contdarget;
— B, - prior probability of overlooking, or a false-raiye outcome, the

conditional probability that an inspection declaifest locationi has no target
but in fact it has;

— t, - expected time to inspect célby one of the teams

— ¢, - expected number of potential survivors in ¢ell

Each sequential inspection strategy specifiesite fiequence
s = <S[0] .s[1].s[2] ....s[n] >

where s[n] denotes the cluster's index which ipésted by K parallel teams at th& n
step of sequence s, d[f{[L,2,...} and s[0] is an initializing sub-sequenaklocations
which will be defined below.

Given the above input data, the optimal searchas@eis specified by the following
conditions:

i. the clusters are inspected sequentially;
ii. for any search strategy and any cluster, the outsoof inspections are
independent;
iii. the stopping rule is defined as follows:

For any integeh, define - a,, - the conditional probability that clustér contains
the target given that it contains the targdﬂi'rmspections.<’;lih depends on the give,
,[a’i . In addition,let H, ("height") be the minimal positive integer suchtta, = CL

where CL is a priori given confidence level. It should beetbthat all of theH, 's

can be computed by the rescue manager beforeahehggrocess starts.
Given a sequenceof inspections, the search ends when either tielseescue time
reserve expires, or, at some step, all clusteusrréhe outcome ofthetargetis claimed

to beinlocation i for the Hith time in S”.
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For a given sequen&, we shall use the following notation:

Ts[n] =T (S[ n] , S) —time (accumulated) spent to detect the targst[h]

on then™ step of strateg$,
- Ts[n] = maxts[m] where maximum is taken over all the teams workimng i
m

cell;
- Ps[n] -the probability that targets, located in &l] , are detected-|5[n]

times before then™ step of strateg$ . Hs[n] and Ps[n] depend on; and

', and guarantee required confidence level; in practid ; ;is equall
' sn]

or 2. This concept and its relationship with thenfadence level CL is
described below.

Cs[n]— lifesaving efficiency in location (clust%I n] .
The expected (linear) total lifesaving efficienEy(S), is defined as follows:
max F é)F 2 Ps[n]cs[n]Ts[n]
subject to N
Tm=To

In the above notation, the stochastic schedulinglpm is to find a sequen&* that
maximizes the expected efficiendy(S) subject to the search time reserve.

One should note that the above formulation gives to three special cases: when
a, = ,[a’l =0for every i, the problem is known as the perfect inspectiomblpm

researched in the finite-horizon scheduling literat If allar; ' Sare zero but3 # O for

all i's we have the false-negative inspections and;ifZ 0,5 = O for everyi we
have the false-positive inspections. In additiohewthe problem is minimization, and

the time reserve constrain is relaxed, the modwlish simpler and can be solved using
a proposed method in [12].

4 Problem Analysisand Algorithm

We begin by defining

B, ={Inspection declares that cluster hateget},
C, ={Clusteri really contains the targe
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and using the notations in Section 3 we hpve P(Ci) va, =P (B||C_.) and
s =r(Blc):
Now, the probability that the target is discoveiredell i , defined fi , is equal to
f,.=P(B)=P(C)P(B/C)+P(C)P(B/C)=p {1-8)+(1-p)a,

while the probability to correctly detect the tariecell i within a single inspection is
equal to

P(C)P(B /C) _ p,{1-5)
P(Ci)P(Bi/Ci)+P((:)P(Bi/(:) pi ml_ﬁi)"-(l_ pi)ai

P(C,/B)=

Theorem 1. Given a sequencg the conditional probabilityg,,, - the probability that

locationi contains the target given the probability it congathe target it inspections
is given by:
P(c)P(8

@ nB@n..nBM /Ci)

a, = P((:i /Bi(l) n Bi(z) A A Bi(h)) —

_ p1-8)
P E(l‘ﬁi)h +(1_ pi)aih

Corollary. Given a predetermined confidence level CL forgtabability &,, defined
above Hi is the minimal integer satisfying
a, = p {1-4)"
= .
p OL-B8)" +(1-p)a’

2 CL for anyi .

Inspections in each clustévl, are done in parallel by different rescue teamgén p
specified times. The search strategy is a finitpieace of clusters (more exactly, their
index), where, at stef, the cIusterS[n] is inspected and rescued:

s= <S[O],s[1] sos[n] >

Denote bys[k, n] the number of a cell in C|u5t8[ n] inspected at the nth step of

strategyS . Denote b)é[k, n] the total number of inspections of cs{k,n] counting

from the first inspection up to its inspection loster s[n] inspected at the™ step of

strategyS. Notice that s*[k, n] can be easily computed for ak as soon as the
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: . th .
sequences is known up to itsl" step. Denote bycs[k’n] the rescue effectiveness

assigned to cesl;{k,n] . Let Ts[k’n] be the time spent for inspection of all cells dftlad

clusters in strategyg up to Iocatior!s[k, n] )

N k
Ts[k,n] = zti (HI —1) + maxT[m,s] + zts[k,n]' n=1
i=1 i=1

The search effectiveness attributed to strageigy

£ (5)= B0 (R(9)= 33, Ry () P (R(5) = Ry (9) -

o o S* [k' n] -1 S‘[k'n]iHS[k,n] .
- Z: Cs[k‘"]Ts[k'”] [ H 1 ](1_ fs[k,n]) Dfsl[—'ks,[n]]

n=1 k=1 s[k.n] -

Theorem 2. The strategyS* is an optimal strategy for the max-efficiency searc
problem iff the ratios

o in
écs[k,n] EPs[k,n] écs[k'n] EPS[k’n] (S [k, n])

Qs[n] -
Ts[n] TS[”]
in s [k, n] -1 s'[kon]=hgpy o) h
c 1_ f ' I:lf 's[k.n]
T

s{n]

are arranged in non-decreasing order of the madmit
The proof is by the interchange argument and skifiygze.

5 Example

Consider the problem of searching a target in ehststic setting described in [3]. The
rescue team has limited time (to perform the seanthrescue operation) and limited
memory (the only saved information is the inforrmaton how many times a target has
been detected in each visited cell up to a custeqtin the search sequence). The search
stops as soon as the limit of the search timehaested. The area of interest is divided

into N possible locations containing the hidden targetsur example, we consider an
area divided into four sub-areas with one cell &wre( M ={c,,C,,C,,C,} ) two

teams (K =2) and T, =24(hours). In addition, there are three clusters,
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C, ={c,c,}. C, ={c,,c;} andC, ={c,,c,} . The input data is given in Table 1
below and the confidence level is 95%.

Table 1. Input Data

Cells o (o C, c,
p. =P(C) 0.5 0.6 0.75 0.01
a, =P(B]C) 0.07 0.10 0.12 0.10
B =pP(B/C) 003 0.07 0.05 0.04

t, 5 8 10 10

c, 20 10 12 2

Using Table 1 and (1)-(2) we can compufe and H, for i =1,2,3,4 For
example, for the first celli(=1) , we have f, =0.52, a,, =0.932692and a,, is
equal t00.99481¢. Following,H, equals 2 for £L of 95%.

Table 2 below presents the valuesfofind H, for all four cells.

Table 2. Computation off; and H,

Cells C C, C C,
f. 0.52 0.618 0.8025 0.0106

H 2 2 1 4

The optimal strategy is as follows:
(s[o].c,.c,.c,.C,,..p=(1,2;1,2;1,2;3,3,1,2,).

where s [o] = <1, 2> . The search process rapidly converges and stopglafée steps

demanding 23 hours: probability that the processdwmt stops at step 1 is 1; that it
does not stop at step 2 is 0.4687, at step A 668, at step 4 is 0.0111, and at step 5 is
zero.

6 Conclusion

In this work, we present a fast algorithm to sallve two-stage detection-and-rescue
planning problem. In order to optimize the scheuylprocess, we use a greedy
strategy, an index-based strategy, which is prawdse optimal when the objective is

to maximize the lifesaving efficiency. The "besister” is selected at each stage, and
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the process is proved to be rapidly converging. ®alution is both simple and
computationally efficient. When the confidence leigepre-defined, such local search
strategies guarantees an optimal (max-efficienegych sequences. In addition, using
the suggested greedy methods can be applied to stfaech scenarios (e.g., with
moving targets, agents-with-memory, etc.) and caoinlgi it with dynamic
programming and biology-motivated heuristics canab@erspective direction for
solving more complicated detection-and-rescue prenproblems.
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