Affective States in Software Programming:
Classification of Individuals based on their
Keystroke and Mouse Dynamics

Amaury Hernandez-Aguila, Mario Garcia-Valdez, and Alejandra Mancilla

Instituto Tecnolgico de Tijuana
Calzada Tecnologico s/n, Tijuana, Mexico
amherag@tectijuana.edu.mx
mario@tectijuana.edu.mx
alejandra.mancilla@gmail.com

Abstract. In this paper, a method is presented for the classification
of an individual into two affective states: boredom and frustration. To
gather the necessary data, the individual interacts with an Intelligent Tu-
toring System focused on the teaching of programming languages. The
method involves a classifier based on k-NN, and feature vectors gener-
ated by the preprocessing of keystroke dynamics and mouse dynamics
data. Accurate results are achieved by determining relevant subsets of
the initial feature set, using genetic algorithms. These subsets facilitate
the training of the classifiers for each affective state.

Keywords: Affective Computing, Intelligent Learning Environments,
Keystroke Dynamics, Mouse Dynamics, k-Nearest Neighbors

1 Introduction

The recognition and simulation of human affects are becoming important fields of
study, as many researchers have demonstrated that affect-aware computers can
provide better performance in assisting humans [1]. There are works describ-
ing different approaches for the recognition and simulation of affective states
in human beings. For example El Kaliouby and Robinson [2] proposed a sys-
tem based on Dynamic Bayesian Networks (DBN) that successfully recognized
affective states from a video stream of facial expressions and head gestures in
real-time. A work aimed at the simulation of affective states is by Becker-Asano
and Wachsmuth [3] who created MAX, a virtual human that simulates emotions
in congruence to the mood of the person that interacts with it.

It didn’t take long before these techniques were implemented as components
of Intelligent Learning Environments (ILE), as the recognized affective states
can be used as part of the students’ user model. D’Mello, et al. [4] present the
development of an affect-sensitive Intelligent Tutoring System (ITS) called Au-
toTutor, which recognizes the emotions of a learner by monitoring conversational

pp. 27-34 27 Research in Computing Science 87 (2014)



Amaury Hernandez-Aguila, Mario Garcia-Valdez, and Alejandra Mancilla

cues, gross body language, and facial features, and attempts to address the pres-
ence of negative emotional states with empathetic and motivational statements.
Additionally, Drummond and Litman [5] explain a method based on machine
learning classification models to asses if a student is zoning out during a spoken
learning task.

But as more ILEs embrace these methodologies and techniques pertaining to
the field of study known as Affective Computing [1], a problem arises. In order
to perform a recognition of the users’ affective states, a sensor must be used to
gather data. Frequently, these sensors can be considered as intrusive or invasive
[6] [7] [8], and can disrupt the learning experience of a student. In this work,
a method is proposed for the recognition of affective states based on Keystroke
and Mouse Dynamics. Keyboard and mouse input devices should address the
problem of the intrusive nature of most sensors, as the vast majority of an ILE’s
users should be familiarized with the use of this hardware equipment nowadays,
and should not regard them as an abnormal factor in the learning environment.

Research works related to Keystroke Dynamics (KD) are carried out either
using fixed-texts, or free-texts [9]. KD performed on fixed-texts involves the
recognition of typing patterns when typing a pre-established fixed-length text,
e.g., a password. In the other case, free-text KD achieves the recognition of
typing patterns when typing an arbitrary-length text, e.g., a description of an
item. However, as noted by Janakiraman and Sim [10], most of the research
regarding KD is done on fixed-text input, the reason being that fixed-text KD
usually yields better results than free-text KD. Yet, the authors of this work
share the opinion with Janakiraman, R., and Sim, T., that it would be more
useful if KD can handle free text as well as fixed text.

As a proof of concept for free-text KD, the method for the recognition of affec-
tive states presented in this work is performed in an ITS focused on the teaching
of software programming, where students need to input arbitrary-length source
code. In this ITS, a student is required to solve a series of programming exer-
cises, and, according to a feature vector extracted from the processed Keystroke
and Mouse Dynamics data, a classification of two affective states (boredom and
frustration) of the student is accomplished. This classification involves determin-
ing if a student was experiencing or not each of the two affective states during
the resolution of the programming exercises. With the proposed method, ILEs
can predict a learner’s affective states, and create better user models in order to
provide adaptive, affect-sensitive content.

The structure of this work is organized as follows: Section 2 presents a series
of works related to the proposed method in this paper; Section 3 describes the
proposed method for the recognition of two affective states in an ITS for the
teaching of programming languages; Section 4 explains how an experiment was
performed to demonstrate the proposed method, and Section 5 presents the
results; finally, a conclusion to this work can be found in Section 6.

Research in Computing Science 87 (2014) 28



Affective States in Software Programming: Classification of Individuals based on their ...

2 Related Work

Bosch, D’Mello and Mills [11] analyzed the relationship between affective states
and performance of novice programmers when they were learning the basics of
computer programming in the Python language. The results of their study in-
dicated that the more common emotions students experienced were engaged,
confusion, frustration, and boredom, with 23%, 22%, 14%, and 12% of the stu-
dents experiencing these emotions, respectively. It was useful to consider these
results, as it gives evidence of what affective states to be targeted in order to
obtain less biased data. For example, if a less common emotion was chosen, a clas-
sifier could opt to classify any feature vector as not experiencing such emotion.
Nevertheless, the classifier would obtain accurate results, although the classifier
would be inaccurate at determining if a feature vector was actually experiencing
the given affective state.

Similar to the previous work, Rodrigo, et al. [12] observed which affective
states and behaviors relate to student’s achievement within a Computer Science
course. The authors found that confusion, boredom and engagement in IDE-
related on-task conversation are associated with lower achievement.

Although the use of Keystroke Dynamics (KD) can be found in several re-
search works as a biometric measure, its use as a mechanism for identifying
affective states is rare in comparison. Epp, Lippold and Mandryk [13] effectively
used KD in conjunction with decision-tree classifiers for the identification of 15
affective states. Although their work was based on fixed-text KD, their decisions
on how to extract a feature set from the data generated by the KD process
was an inspiration for the proposed method in this work. As for free-text KD,
Bixler and D’Mello [14] present a method for the identification of boredom and
engagement based on several classification models.

Regarding Mouse Dynamics (MD), some research has been conducted for the
identification of affective states, although, as with the case of KD, MD is mainly
used as a biometric measure for authentication processes. Salmeron-Majadas,
Santos and Boticario [15] use both MD and KD to predict four affective states
using five different classification algorithms. Bakhtiyari and Husain [16] discuss
a method based on fuzzy models for the recognition of emotions through KD,
MD and touch-screen interactions. For a broad review of emotion recognition
methods based on KD and MD, the work by Kolakowska [17] is recommended.

3 Proposed Method

A web tutorial was developed to obtain the necessary data (it can be found
online at http://app.protoboard.org/). The current state of this platform can’t
be considered an ITS yet, but its aim is to become one.

The web tutorial’s course begins with three introductory videos that explain
the fundamentals of programming in Python, and how to solve the programming
exercises in the course. What follows after these videos are ten programming
exercises that the students need to solve in a consecutive manner.

29 Research in Computing Science 87 (2014)



Amaury Hernandez-Aguila, Mario Garcia-Valdez, and Alejandra Mancilla

In Figure 1, the interface of this platform is presented. On the left, a naviga-
tion tree is shown, where students can click on the different learning objects that
the course contains. On the right, a text processor is embedded, where students
can try to solve the programming exercise described below.

Imprime Hola

a funcion llamada foo a cual imprima Hoa.

Fig. 1. Interface of the Web Tutorial

Capturing the Keystroke and Mouse Data While a student is trying to
solve an exercise, a script coded in JavaScript is running in the background,
which captures every keystroke, mouse movement and mouse button press. Each
capture of these events records a timestamp in milliseconds (using the method
getTime() of JavaScript’s built-in object Date) that describes when the event
occurred. If the event is a keystroke, the script captures what key was specifically
pressed (a JavaScript key code), and what type of event occurred (it can be either
a key-down or a key-up event). If it is an event related to a mouse button press,
the key code of that button is recorded, as well as the type of event occurred
(key-down or key-up). Finally, if the event was a mouse movement, the mouse
coordinates inside of the web browser is recorded. The script monitors the mouse
position every 100 milliseconds, and if the position has changed, it records the
new position.

Capturing the Affective States In order to determine what affective states a
student was experiencing, an Experience Sampling Method (ESM) was used [18].
After the students successfully solve a programming exercise, they are presented
with an ESM survey that asks what they were feeling during their solving of
the exercise. A very brief description is given about what to do in this survey,
followed by two statements the students need to answer according to how they
were feeling. As an example, the statement “I was feeling frustrated” is presented,
and a student needs to answer either “Strongly agree,” “Agree,” “Neutral,”
“Disagree,” and “Strongly Disagree.”

Research in Computing Science 87 (2014) 30



Affective States in Software Programming: Classification of Individuals based on their ...

Preprocessing of the Keystroke and Mouse Data The raw data obtained
from the JavaScript script needs to be preprocessed in a way that results in
a feature vector. Basically, this preprocessing consists in measuring the delays
between key-down or key-up events of the keystrokes and mouse button presses
a student performed during an exercise. The averages and standard deviations
are calculated for each of these delays. To calculate these delays, the keystrokes
are grouped in digraphs and trigraphs, as it is a common practice when dealing
with Keystroke Dynamics [19].

As most of the mouse button presses performed by a web site user are left
button clicks, only these button presses are considered. To calculate the average
and standard deviations of these presses, the delays between key-down and a
key-up events of the left button clicks are used.

In addition to these averages and standard deviations of the delays between
keystrokes and mouse button presses, the average and standard deviations of
the number of total events contained in a digraph and a trigraph are calculated.
These features are proposed and explained by Epp, Lippold, and Mandryk in [13].
Most of the times, a digraph should contain four events, while a trigraph should
contain six events. However, sometimes an individual can start a digraph or a
trigraph before ending the previous one. This additional features represent these
particular cases, and could be meaningful for the estimation of an individual’s
affective states.

Regarding the mouse movements, the average and standard deviation of the
duration of each mouse movement, and the averages and standard deviations of
the movements in the X and Y axes, are calculated.

Lastly, a final feature is added to preprocessing of the data. The web tutorial
recorded how many attempts a student required before successfully solving an
exercise. This number of attempts is included in the final feature vector.

The final feature vector consists of 39 features.

Preprocessing of the Affective States The answers “Strongly agree,” and
“Agree” were grouped into a single “Agree” class. The same was performed for
the answers “Strongly disagree,” and “Disagree.” As a result, the feature vectors
are now classified as either “Agree,” “Neutral,” or “Disagree”, for each of the
two affective states. The reason behind this decision is that the classifiers were
performing poorly for such a big set of possible classes.

Classification The feature vectors need to undergo an optimization process.
This process consists on using a Genetic Algorithm to determine a subset of
features that facilitates a classifier to obtain good results (this is explained in
more detail in Section 4). The resulting feature vector is used as input to a
classifier based on the k-Nearest Neighbors (k-NN) algorithm. In the end, two
classifiers are trained: one for the frustration affective state, and another one for
boredom.

31 Research in Computing Science 87 (2014)



Amaury Hernandez-Aguila, Mario Garcia-Valdez, and Alejandra Mancilla

4 Experiment

55 students with basic knowledge in software programming were asked to take
the course presented in the web tutorial. The students were either studying
Computer Systems Engineering, and were at least in their second year of study,
or were students of a Master in Computer Science. Their ages were in the range
of 18 to 30 years old. Although no experience in software programming was
needed, as the web tutorial’s course is of a very basic level, all the participants
were required to had completed at least one course in software programming.

The goal for the students was to solve as many exercises in the web tutorial
as they could. There was no time limit nor a minimum amount of time required
for a participant while trying to solve the courses or complete the tutorial. The
participants were able to stop and resume their interaction with the system at
any time.

The participants’ interaction generated a total of 142 feature vectors, mean-
ing that each student solved an average of 2.58 exercises. The 39 features were
associated with the answers of the ESM surveys the students had to answer after
each exercise. As a result, the 142 feature vectors were used to train a classifier
for each affective state. Each of these classifiers have the task of estimating if a
given feature vector corresponds to either an “Agree,” “Neutral,” or “Disagree”
class, for the frustration and boredom affective states.

At a first attempt at training the classifiers, bad results were being obtained.
Accuracies of 50% and below were frequent with each of the attempts, as well
as Kappa Coefficients below 0.1.

The solution to this problem was to perform a selection of a subset of features
in the feature vector. The hypothesis was that the classifiers were performing
badly because of the high number of features, and because of the possible irrel-
evant features, i.e., features that don’t help the classifier to improve its results.
This preprocessing of the feature vector was done with RapidMiner’s Optimize
Selection operator based in Genetic Algorithms. Even with a population size
of 700, the training and validation process had to be run several times before
determining a satisfactory subset of features for both classifiers. In the end, the
subset for the frustration classifier consists of 11 features, and the subset for the
boredom classifier consists of 13 features.

For the validation of the results, 10-Fold Cross Validation was used.

5 Results

The results obtained with this method are very satisfactory, considering free-
text KD was used. The accuracies and Kappa Coefficients obtained are close
to what is usually obtained in fixed-text KD methods (for example, the results
presented in [13]), and far superior to other research works involving free-text
KD to predict affective states (for example, the results presented in [14]).

As can be seen in Figure 2, both accuracies are well above 70% which is
considered a very good value in works pertaining to Affective Computing. In

Research in Computing Science 87 (2014) 32



Affective States in Software Programming: Classification of Individuals based on their ...

the case of the Kappa Coefficients (Figure 2), it is usual to see values below
0.2 in methods involving free-text KD. In this case, both Kappas were close to
0.5. Specifically, the average and the standard deviation of the accuracies for the
boredom and frustration classifiers were 83.81%+/-5.51%, and 74.00%+/-6.07%,
respectively; and for the average and the standard deviation of the Kappas, they
were 0.5814/-0.168 and 0.54/-0.111, respectively. This means that, although
both classifiers performed very well, the proposed method is more suitable for
the classification of boredom.

Averages Kappas
100.00% 08
90.00% 0.7
B0.00%
0.6
T0.00%
60.00% 03
50.00% 04
40.00% 03
30.00%
0.2
20.00%
10.00% 01
0.00% 0
Boredom Distraction Boredom Distraction

Fig. 2. Accuracies and Kappa Coefficients for the Boredom and Frustration Classifiers

6 Conclusion

The proposed method in this work obtained very satisfactory results. It is usual
for a classification method based on free-text KD to obtain accuracies and Kap-
pas below to their counterparts of fixed-text KD, and in this work the results
obtained were similar to those works based on fixed-text KD. A possible ex-
planation of this would be the addition of the MD features, and the additional
preprocessing performed on the feature vectors.

As mentioned before, in the beginning of the Experiment, the proposed
method was obtaining bad results, somewhat comparable to those usually ob-
tained in methods based on free-text KD. However, after the optimization pro-
cess (determining a subset of features), the results improved.

Acknowledgements

Funding provided by CONACYT (Mexico) Project No. 29537 from the Programa
de Estimulo a la Innovacién and 2014 DGEST Project: Técnicas de computacién
inteligente para el secuenciado adaptativo de ejercicios de programacién en la
nube.

33 Research in Computing Science 87 (2014)



Amaury Hernandez-Aguila, Mario Garcia-Valdez, and Alejandra Mancilla
References

1. Picard, R.W.: Affective computing. MIT press (2000)

2. El Kaliouby, R., and Robinson, P.: Real-time inference of complex mental states
from facial expressions and head gestures. Real-time vision for human-computer
interaction. Springer US, 181-200 (2005)

3. Becker-Asano, C., and Wachsmuth, I.: Affect simulation with primary and secondary
emotions. Intelligent Virtual Agents. Springer Berlin Heidelberg (2008)

4. D’Mello, S., et al.: AutoTutor detects and responds to learners affective and cog-
nitive states. Workshop on Emotional and Cognitive Issues at the International
Conference on Intelligent Tutoring Systems (2008)

5. Drummond, J., and Litman, D.: In the zone: Towards detecting student zoning out
using supervised machine learning. Intelligent Tutoring Systems. Springer Berlin
Heidelberg (2010)

6. Jing, Z., and Barreto, A.: Stress detection in computer users based on digital signal
processing of noninvasive physiological variables. Engineering in Medicine and Bi-
ology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE.
IEEE (2006)

7. D’Mello, S., et al.: Integrating affect sensors in an intelligent tutoring system. Af-
fective Interactions: The Computer in the Affective Loop Workshop (2005)

8. Arroyo, L, et al.: Emotion Sensors Go To School. AIED. Vol. 200 (2009)

9. Gunetti, D., and Picardi, C.: Keystroke analysis of free text. ACM Transactions on
Information and System Security (TISSEC) 8.3, 312-347 (2005)

10. Janakiraman, R., and Sim, T.: Keystroke dynamics in a general setting. Advances
in Biometrics. Springer Berlin Heidelberg, 584-593 (2007)

11. Bosch, N., D’Mello, S., and Mills, C.: What Emotions Do Novices Experience
during Their First Computer Programming Learning Session. Artificial Intelligence
in Education. Springer Berlin Heidelberg (2013)

12. Rodrigo, M.M.T., et al.: Affective and behavioral predictors of novice programmer
achievement. ACM SIGCSE Bulletin 41.3 156-160 (2009)

13. Epp, C., Lippold, M., and Mandryk, R.L.: Identifying emotional states using
keystroke dynamics. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM (2011)

14. Bixler, R., and D’Mello, S.: Detecting boredom and engagement during writing
with keystroke analysis, task appraisals, and stable traits. Proceedings of the 2013
International Conference on Intelligent User Interfaces. ACM (2013)

15. Salmeron-Majadas, S., Santos, O.C., and Boticario, J.G.: Exploring indicators from
keyboard and mouse interactions to predict the user affective state. Proceedings of
the 7th International Conference on Educational Data Mining (EDM’14) (2014)

16. Bakhtiyari, K., and Husain, H.: Fuzzy Model in Human Emotions Recognition.
12th WSEAS International Conference on Applications of Computer Engineering
(ACE ’13) 77-82 (2014)

17. Kolakowska, A.: A review of emotion recognition methods based on keystroke dy-
namics and mouse movements. 6th International Conference on on Human System
Interaction (HSI). IEEE (2013)

18. Larson, R., and Csikszentmihalyi, M.: The experience sampling method. New Di-
rections for Methodology of Social & Behavioral Science (1983)

19. Sim, T., and Janakiraman, R.: Are digraphs good for free-text keystroke dynamics.
IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07).
IEEE (2007)

Research in Computing Science 87 (2014) 34



