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Abstract 

In this paper, we argue that the key to the success of the current state-of-art 

statistical learning algorithms for Chinese word segmentation (CWS) mostly lies in 

their optimal weighting of non-overlapping distributional evidence in the corpora. The 

utilization of distributional evidence is more essential than the learning algorithm. We 

further analyze the characteristics of distributional evidence for CWS, under the 

framework of Zipf’s law and summarize the limitation of statistical learning in CWS 

as the feature absence problem, which may be apparent yet usually neglected. Making 

a connection between theoretical/empirical linguistics and CWS, we suggest that the 

study and development of a generative word formation system may be beneficial for 

both the science and engineering of CWS. We wrap up the discussion after reviewing 

some recent works that are already on this line. 

Introduction 

Tokens in general, words are considered as building blocks of linguistic structures of 

human languages and basic inputs for natural language processing (Webster and Kit 

1992). In many Asian languages, including Chinese, sentences are written as 

character sequences without explicit word delimiters, thus tokenization or word 

segmentation remains a key research topic in language processing for these 

languages. 

    The most popular model among modern word segmenters is probably character 

position tagging (Xue, 2003), which views word segmentation as labeling the 

positional roles that character plays within words, using labels such as Beginning, 

Middle, Ending and Singleton.  Under such formulation, Chinese word segmentation 

(CWS) becomes a special case of sequence labeling problem, which can be 

effectively solved by machine learning techniques such as conditional random fields 

(Lafferty et al., 2001), which achieves state-of-art results for CWS. 

In recent years, the performance of machine learning based segmenters has been 

further pushed forward by model combination (Wang et al., 2010; Sun, 2010), 

utilizing unsupervised segmentation on unlabelled data (Zhao and Kit, 2008; Sun and 

Jia, 2011), jointly learning segmentation and POS tagging (Jiang et al., 2008; Zhang 
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and Clark, 2008; Sun, 2011), etc. On the other hand, it appears that out-of-vocabulary 

words (OOV) remain a major challenge even for these sophisticated systems. Given 

this background, our paper attempts to analyze both successes and limitations of 

machine learning approaches to CWS, in the hope of bringing new understandings 

and inspiring novel methods. 

First of all, what types of evidence (information/feature) are most important for any 

segmenter? The most intuitive choice is lexical forms, which have been extensively 

used by early systems in the form of dictionary or token functions (e.g. frequency). 

However, as lexical forms are incapable of describing morphological behaviors of 

characters, it fails to contribute to recognition of OOV, which exist as a result of 

dynamic and productive word formation in Chinese. It turns out that character 

information alone provide adequate information for describing both IV (in-vocabulary 

words) and OOV, suggested by the success of various character position tagging 

systems. Specifically, such systems mostly rely on character distributional evidence, 

i.e. characters and character co-occurrences in different positions of words or word 

sequences.   

  Another important question is what role machine learning algorithms play. It 

might seem that the machine learning algorithm is a black box where magic happens, 

i.e. machine learning should get all the credit for the improvement over the well 

established baseline of maximum matching (Liang, 1986). But this needs more careful 

examination. We show in section 3 that the role of machine learning in CWS systems 

can be better described as feature weight optimization. 

One implication of above mentioned issues is that despite different strategies for 

feature weight optimization, the performance of virtually all the current machine 

learning based segmenter are bounded by what can be expressed by character 

distributional evidence. Like many other linguistics phenomena, the character ngram 

distribution is characterized by Zipf’s law (Zipf, 1949), which states that relatively 

few items are very frequent while most items are rare. Given Zipf’s law, the 

distributional features that we have acquired from the training corpus are likely to 

cover only a subset of distributional features of the testing corpus, as some of rare 

features may only appear in either corpus but not both. This is consistent with our 

empirical study of distributional evidence and is exactly the problem for recognizing 

OOV. So the real challenge in CWS is that the distributional evidence for some 

characters in OOV is at least partly unavailable, where algorithmic predictions yield 

only low accurate guessing.  

Similar to the limitation of machine learning in CWS, Yang (2011) suggests that 

usage/item-based theory in language acquisition (Tomasello, 2000; Hay and Baayen, 

2005) has drawbacks on modeling the empirical data, also because of the Zipf’s law. 

The generative linguistic system, on the other hand, is consistent with the language 

acquisition data.  Interestingly, recent development of Chinese morphology, such as 

Packard (2000) and Xue (2001) also argues that it is attractive to describe word 

formation in Chinese using generative rules with part-of-speech like tags. These 

theoretical advancements shed light on new paths to solving the OOV problem in 

word segmentation with generative word formation models. Our discussion finishes 
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by summarizing some pilot work that are already in this direction, including work of 

the current authors. 

Distributional Evidence for CWS 

Early work in CWS extensively use lexical forms as the main information source. In 

maximum matching, sentence substrings that match lexical entries in the dictionary 

are selected as word candidates and the disambiguation of conflicting segmentations 

are achieved in a greedy search way. In finite state methods for CWS such as Sproat 

et al. (1996), lexicon is represented as weighted finite state machines and the 

segmentation disambiguation is based on scores of individual lexical item given by 

the finite state machine, which is mostly trained from word frequency statistics. But 

the rise of character position tagging approach to CWS shows that the lexical 

information is neither necessary nor adequate for the building accurate CWS 

systems. On one hand, various systems mainly using character distribution 

information (Xue, 2003; Peng et al., 2004) have similar results on IVs compared with 

word-based systems. On the other hand, character position tagging systems have very 

strong power on OOV recognition, which word-based systems basically fail to do.   

    Note that even for recent discriminative learning powered word-based segmenters 

(Zhang and Clark, 2008) that have state-of-art performances, character level features 

have been widely integrated. Actually, while it is hard to imagine how OOV can be 

properly modeled if all the character information is removed, discarding all lexical 

information may just end up with a system somewhat similar to a character tagging 

system. 

1.1 Character Features that matter 

In fact, lexical forms can be viewed as a special case of character distributional 

information, as the lexicon is a set of character sequences (co-occurrences).  Some of 

the most useful character features proposed in Xue (2003) are following: 

 Character unigrams: Cs  (i-2<s<i+2) 

 Character bigrams: Cs Cs+1 (i-2<s<i+2) 

 Tag unigrams: Ts (s=i-1, i-2) 

, where C represents a character, T represents a tag, s denotes the position index of 

the character string and i denotes the position of the current character of interest.  

It can be seen that besides the interactions with character position tags, features are 

basically character co-occurrences. This feature set has been widely adopted in many 

latter systems, complemented by extra features such as punctuation, date, digit and 

letter, tone, etc. (Zhao et al., 2006). But it is fair to say the improvement brought by 

extra features is useful yet marginal. 

1.2 The minority rules 

It is not adequate to know that character distributional evidence is the dominant 

information for segmentation. As features do not necessarily contribute equally to the 

task, it is more interesting to examine how different features influence the 
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segmentation. Feature pruning provides a good perspective to understanding the 

contributions of individual features. If some features are pruned without significantly 

hurting the performance, these features may be less crucial or at least redundant with 

regard to the remaining features. Zhao & Kit (2009) have proposed a simple and 

efficient model pruning method for conditional random fields. A closer look at their 

experiments results on CRF based CWS helps us better understand the roles that 

different features play. The general message is that standard features as mentioned in 

previous section are highly redundant. According to their report, the model that uses 

only 2% of total number of features that have survived the pruning process can still 

reach above 97% of the accuracy of that which can be accomplished with the full 

feature set. Moreover, no performance loss occurs at all until the pruning rate is larger 

than 65%. In other words, a few features contribute a great deal to the performance of 

the current state-of-the art system.  

    Researchers have also found similar patterns on other sequence labeling tasks such 

as named entity recognition and chunking as well (Goldberg & Elhadad, 2009). It has 

shown that accurate models for these tasks can be learned from a heavily pruned 

feature space, which contains less than 1% of the features in the training set. In their 

experiments it turns out that rare features are used for ruling out uncertain cases by 

the machine learning algorithm rather than learning useful generalizations. We 

speculate that this conclusion might also be true for CWS task and we will further 

discuss the characteristics of the distribution of character ngram features in section 4.   

The Role of Machine Learning 

The Chinese language processing community has witnessed a dramatic 

performance boom of CWS systems since the introduction of machine learning 

algorithms under the character position tagging framework. It appears that machine 

learning is the black box where magic happens, as there is a huge gap between the 

state-of-the-art machine learning systems and the traditional dictionary-based greedy 

search baseline maximum matching. However, since most machine learning based 

systems dominantly rely on character distributional evidence, one may wonder 

whether the character distributional evidence within the framework of character 

position tagging should be given more credit that they have deserved. Our preliminary 

study has also shown that it is possible to achieve more than half of the error 

reduction on OOV recognition that the-state-of-art methods can achieve, by a simple 

combination of distributional evidence.  

    The re-examination of the role of machine learning in CWS is useful for a 

thorough understanding on how machine learning contributes to this task. To simplify 

the discussion, we restrict ourselves to log linear family of learning algorithms, i.e. 

maximum entropy, CRF, etc.  These algorithms combine the features in a linear way 

and the learning process is reduced to the estimation of feature weights. But the 

argument should also hold for other algorithms, such as artificial neural networks, the 

only difference of which in this context is that there are hidden nodes that represents 

non-linear combinations of features. In either case, what machine learning can do is to 

optimize the weights for features using different strategies. Thus the role of machine 
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learning can be summarized as feature weight optimization.  This understanding is 

important as one should distinguish the challenge in optimization for a given the 

feature space and the inherent problems of feature space itself. As we will show later 

sections, this links closely to the limitations of machine learning approaches to CWS 

and calls for new perspective of looking at CWS. 

The Zipfian Distribution of Distributional Evidence 

1.3 The feature absence problem of OOVs 

OOVs are considered to be the major error source in the state-of-the-art machine 

learning based CWS systems. While those systems can achieve accuracy (F-score) 

over 95% on treebank corpora, their recall on OOVs are typically only around 70% 

(Emerson, 2005; Levow, 2006; Zhao and Liu, 2010). In order to illustrate the main 

problems of machine learning approaches to CWS, we have conducted an empirical 

study on those OOVs that the modern CWS systems fail to recognize. We are 

particularly interested in whether those errors are caused by feature weight 

optimization problems, or the inherent problems of the feature space itself.  

    The study is based on Penn Chinese Treebank version 5 (Xue et al., 2005), 

which is manually word-segmented. We trained a CRF based segmenter on 75% of 

the corpus and use the model to segment the remaining 25%. Those words only occur 

in the training section but not the testing section are considered as OOVs. The OOV 

rate is about 9% in this set-up. We use a simplified version of feature template 

proposed in Xue (2003) for training, namely only current characters (C0), current and 

previous characters (C-1C0, denoted as B1) as well as current and next characters 

(C0C1, denoted as B2), i.e. unigrams and left/right bigrams. This choice is for the 

purpose of concentrating on the dominant factors and simplifying the discussion, 

given the fact that those features contribute more than 98% of the overall accuracy 

and 95% of OOV recall on this corpus.       

    One observation about those error-causing OOVs has drawn our attention. 

Among all character instances, 

 1.6% have C0 feature unseen and thus B1 and B2 feature unseen in the 

training corpus (Type I);  

 29.2% have only C0 feature seen, but both B1 and B2 features are unseen 

(Type II); 

 36.2% have and only have one of the bigram features unseen, i.e. either B1 

and B2 is unseen (Type III). 

In other words, 67% of character instances have at least one of the features B1 and 

B2 unseen from the training corpus, while only 23% of character instances have both 

B1 and B2 seen in the training corpus. 

    We may call this phenomenon as the feature absence problem. Type I is 

apparently fatal for any meaningful prediction, as there is not any feature at all for the 

model to utilize. Type II is also disastrous for a sensible prediction, as the unigram 

feature C0 alone could hardly determine the label or the role of the character 

correctly. In Chinese, the majority of character may occur in any position of a word, 
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i.e. its label can be either Start, Middle, End or Singleton, except for a few characters 

which have dominant roles such as prefix (e.g. 非, ‘not/non’, 反 ‘anti’) or suffix (e.g. 

者  ‘one who does or is ...’, 化  a verbalizing suffix). Note that even for these 

characters, there are ambiguities as for the role in a word, e.g.  非 can be the end of a 

word as in 是非 ‘right and wrong/quarrel’.  

    Character instances in Type III have a better chance of being correctly labeled 

by the model but relying only on the bigram context on one side is likely to be of high 

bias in the first place, and it might be the case that the bigram context on  “the other 

side” is more informative than the one that are seen in the training corpus. Moreover, 

the association of a certain character co-occurrence with a certain label in the training 

corpus might also be merely by chance, especially for those co-occurrences that are 

less frequent in the training corpus. Finally, the statistics here is with regard to 

characters, and we need be aware that the recognition of an OOV fails even if only 

one the character is incorrectly labeled, which means this 67% feature absence case 

may explain a much higher percentage of OOV tokens that are not recognized. 

    It is clear that the issue above is an inherent problem of the feature space and is 

out of reach for the clever optimizations offered by machine learning algorithms. To 

illustrate this, we fit the discussion in an abstract view of classification algorithms in 

machine learning. The model can be viewed as hyper planes that separate the feature 

space, in which the training instances are dots. The separation should be made in such 

as a way that instances of the same class are in the same subspace, if noise are not 

taken into account. The prediction or testing process is fairly straightforward once 

these hyper planes are determined in the training process. For an new/unseen instance, 

its features corresponds to coordinates of dimensions in the space, once the 

coordinates are determined, the instance fits an area, preferably a dot, in the space 

separated by the model. The subspace that the instance falls in defines its label. 

However, the situation in the feature absence problem is that very few, or in extreme 

cases, no coordinates are given for the new instance in testing data, thus the area in 

the space determined by these coordinates are so vast that they may cross the 

boundaries of the hyper planes. In this case, one would not be able to tell which 

subspace or class that instance belongs to. Of course, sequence labeling is more 

complicated than classification, but the above argument also holds. 

1.4 Zipf’s law and its implications 

The problem seems to be that our training corpus is too small to contain all the 

bigram co-occurrences that occur in the testing corpus. So can we simply enlarge our 

training corpus to solve this problem? Unfortunately, there are two factors that make 

this proposal less appealing as at the first glance. Firstly, the training corpus is 

obtained via human annotations, which are expensive. Secondly, empirical study 

shows that the scale of corpus that we need to capture enough features grows at an 

exponential rate with regard to the number of distinct features (Zhao et al., 2010). The 

second factor is determined by the Zipf’s law (Zipf, 1949), which widely applicable to 

linguistics data and empirical distributions in many other areas. 
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    Zipf’s law states that the frequency of an item (character, word, bigram, etc.) is 

approximately equal to the inverse of its rank in frequency, which can be expressed 

by the following formula: 

 

                                                          f = C/r,                                (1) 

  

where C is some constant, f is the frequency of the item and r is its rank of frequency 

in the set of the item. A perfect Zipfian distribution would be a straight line of slope -

1, with the axes being log of word frequency and the log of word rank. The empirical 

usually have minor deviation from the perfect scenario (Figure 1). There are many 

vocabulary studies that report Zipf’s law in various language and genres (Baroni, 

2008). The distribution of Chinese characters ngrams and word ngrams are of no 

exception. 

                             
                       Figure 1: A Zifp’s law curve of word frequency 

   

  One immediate implication is that only a small percentage of items occur very 

frequently while the majority of items occur very rarely (in extreme but common 

cases, the frequency equals to 1) in real texts. On the word level, Zipf’s law suggests 

that given a relatively small sample of the sentences in a language such as a treebank 

corpus, most words are so rare that they are likely to occur in either training section or 

testing section but not both, which explains why OOVs occur in the first place. 

On the character level, Zipf’s law means that most character co-occurrences are so 

rare that they occur either in training or testing corpus but not both and only a few 

character co-occurrences are so frequent that they are likely to occur in both corpus. 

This explains why very heavy feature pruning works, as a small subset of all character 

co-occurrence types take account for the most co-occurrence tokens. In short, the 

feature absence problem is a rule rather than an exception. 

Another interpretation of Zipf’s law is that it predicts how large a corpus is needed 

to cover a certain number of distinct word/character ngrams. The general idea is that 
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since a few items occur very frequently, a new non-frequent item will only appear 

after seeing many occurrences of these frequent items. Mathematically, the sum of all 

relative frequencies in a Zipf distribution is equal to the harmonic series and 

therefore: 

                                                                                    (2) 

  

This formula states that series gets arbitrarily large as n becomes larger, which 

suggests that exponential more tokens have to occur before more distinct types are 

encountered. This has been confirmed by empirical study (Zhao et al., 2010) as well. 

The bad news is that even though the scale of commonly seen Chinese characters is 

only at thousands. The word formation process that combines characters is very 

dynamic and productive. Even if we only consider words that are made of two 

characters, the upper bound of number of extinct types is 106 (103×103). Although the 

actual number of distinct two-character words is far smaller than the upper bound, the 

scale of annotated corpus needed to solve the data sparseness problem is still 

tremendous. Given the inevitable presence of the feature absence problem, which is 

governed by Zipf’s law, the efforts on solving the OOV recognition problem by 

applying stronger machine learning algorithms or smarter system combination are 

beneficial yet seem to aim only at the tip of the iceberg. 

Relevance to Language Acquisition 

Before we move to the discussion of possible solutions of the OOV recognition 

problem, let us first examine an interesting connection between the limitation of 

feature-based machine learning approaches to CWS and the drawbacks of the item-

based approach to language acquisition.  

Since Chomsky (1965), linguists have been aware of the distinction between 

competence and performance, which suggests that it is limited to draw conclusions 

only from observed linguistic data. For example, some words have never been said 

but are nevertheless grammatically correct. This distinction has also been widely 

accepted in the subfield of language acquisition, even by researchers that do not 

follow the generative grammar. However, this idea has been recently challenged by 

the item or usage based theory of language acquisition (Tomasello, 2000; Hay & 

Baayen 2005, etc). The item-based approach states that language acquisition can be 

achieved by memorizing and operating specific schemas of linguistic forms and 

constructions, in contrast with the traditional thought of learning grammar rules that 

consist a productive/generative linguistic system.  

Note that the claim of the item-based approach to language acquisition is similar to 

the feature-based machine learning approaches to CWS at an abstract level. Both 

approaches build models using specific surface linguistic forms and their co-

occurrences and the model retrieves such stored “pairings of form and functions”  to 

do the production or recognition,  although the models in the former do not 

necessarily of statistical nature as those in the latter do.  
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Interestingly, the generative school fights back (Young 2011) and argues that there 

are some inherent limitations in the item-based approach, as Zipfian distribution 

determines that most “pairings of form and functions” will never be heard and even 

for those do occur may be so infrequent that the storage of usage of such pairings is 

not reliable. Further empirical study has shown that the item- based approach is not 

supported by statistical evidence in language acquisition data. On the contrary, 

generative grammars are consistent with empirical data, based on a model that 

considers the interaction of Zipfian distribution and the combinations of linguistic 

items.  

While CWS is a different domain than language acquisition, the arguments here 

may still provide a hint on understanding the OOV problem. It is likely that the 

Zipfian nature of character/word ngram distributions ensures that the overlap of these 

surface form co-occurrence based features in training and testing corpus of CWS 

systems are quite low by type unless the corpus size is very large, which unfortunately 

requires an exponential growth of the size of the annotated corpus. And the 

consistency of empirical data with generative grammars that have been observed in 

language acquisition case studies may also hold in the word formation process of 

Chinese, which implies an alternative formalism for solving CWS problem in general 

and OOV problem in particular. 

Generative Word Formation Model 

The idea that word formation in Chinese is an generative system is reasonable in 

both language acquisition and theoretical linguistics. This Morphology of Chinese, 

which is represented by early works such as (Zhao, 1968; Lü, 1979) and more recent 

work in the framework of generative linguistics such as (Huang, 1984; Dai, 1992; 

Duanmu, 1997; Packard, 2000; Xue, 2001).  

    Dai (1992) introduced the idea that different notations of wordhood co-exist, 

including morphological word, syntactic word and phonological word. The 

interactions between them explain various word formation phenomena. But his model 

is basically a static lexicon, which does not provide a concrete proposal on how 

morphological words are derived. 

    Packard (2000) is probably the most influential modern work, which treats the 

morphology as an extension of syntax below the word (X0) level, following the 

thinking of Selkirk (1982).  Packard (2000) is based on the “form class description”, 

which assigns words and their components (characters) part-of-speech like tags called 

form class.  He has also suggested so called “Headness Principle”, which states that 

nouns have nominal components (characters) on the right and verbs have verbal 

components (characters) on the left. Like Dai (1992), Packard (2000) also fits into a 

lexicalism framework, and considers both morphemes and complex words with their 

“precompiled” morphological structures in the lexicon, except for complex words 

containing grammatical affixes. 

    In contrast, Xue (2001) have proposed a system that derives virtually all the 

complex words using syntax rules or in the morphology module after syntactic 

analysis, following the theory of distributed morphology (Halle & Marantz 1993, 
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1994). The boundary of syntax and morphology further blurred and the operation 

scope of syntax rules expand to most parts of the morphology.  

    Despite the disagreements, both Packard (2000) and Xue (2001) agree that part-

of-speech like tags for characters and words and syntactic or morphological rules that 

describe the derivation of these tags make essential parts of a generative word 

formation system for Chinese. Computational linguists have started rethinking the 

limitations of feature based machine learning approach for CWS and has called for 

morphology-based analysis of OOVs (Dong et al., 2010). Furthermore, there are 

already pilot works in this direction, such as Zhao (2009), Li (2011) and Ma et al. 

(2012). Both methods happen to be formulated as learning a joint model for 

segmentation and parsing, which has certain practical advantages, but is not necessary 

for learning a word formation model. 

    Zhao (2009) has proposed a character-based dependency parsing model, in 

which the word formation is formulated as the in-word character dependencies, 

without any part-of-speech tags or dependency labels. The dependency model has 

comparable performance on the CWS task as the state-of-the art sequence labeling 

based segmenters. While it is an interesting investigation, pure character-wise 

dependencies seem to be inadequate to model the word formation process in a general 

and productive manner.  

    Li (2011) has proposed a unified parsing model that can parse both word 

structures and phrase structures. Part-of-speech tags and constituent labels are utilized 

in this model. The model extends probabilistic context free grammar based 

constituent parsing to handle the inner structure of words, which has a flavor of 

generative word formation model, i.e. syntactic rules are used to analyze the word 

formation process. The performance of this model on CWS task is slightly better than 

the state-of-the-art but no significant improvement on OOV recognition has been 

reported. Note that this work makes a distinction between flat words and non-flat 

words and the grammar model only deals with the generation of the non-flat words. 

Here the non-flat words are defined as those words that contain productive suffix 

and/or prefix, which is only a small subset of words that can be possibly analyzed by 

syntactic or morphological rules. In this sense, Li (2011) can be viewed as an 

implementation of Packard (2000). The model’s low coverage of the word formation 

phenomena may explain why this model has not brought advancement on OOV 

recognition. The morphological model might be more powerful on OOV recognition, 

if syntax-like rules were used to analyze most of, rather than a small portion of, 

complex words, i.e. by implementing Xue (2001). Nevertheless, the results presented 

in Li (2011) are encouraging, as it has shown the effectiveness of analyzing word 

formation using generative rules. Note that Li (2011) follows a standard paradigm in 

modern syntactic parsing: the probabilistic syntax model that is used for parsing is 

learned from an annotated treebank. So far, we have also limited our discussion to this 

default. 

Ma et al. (2012) have proposed a semi-automatic approach to Chinese word 

structure annotation. They have argued that Li (2011) only annotated affixations, 

which only covered 35% of word types in the corpus and was insufficient to deal with 

the OOV problem. In contrast, their annotation has covered more morphological 
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phenomena, including compounding, which is a more popular word formation process 

in Chinese. Unfortunate, the usefulness of such annotation for the OOV problem has 

not been validated by experiments yet. 

 One may wonder whether it is possible to have such a strong machine learning 

algorithm that can overcome the limitations of current learning algorithms used in 

CWS and effectively induce the word structure without the explicit notion of word 

formation model and the utilization of manual treebank annotation. This turns out to 

be quite a difficult task, and the current computational learning research under the 

framework of Probably Approximately Correct (PAC, Valiant, 1984) suggests that it 

is virtually impossible to learn languages such as finite state and context free 

language, given only distribution of surface forms (Yang, 2011). But learnability 

results are in a general sense and can be modified, e.g. adding certain assumptions, to 

suit various learning scenario, which is an interesting topic itself. 

Conclusion  

In this paper, we have reviewed some state-of-art methods for Chinese word 

segmentation, with a focus on the role of distributional evidence and feature-based 

machine learning algorithms. By showing the Zipfian nature of the distributional 

evidence, we have further investigated the limitations of feature-based statistical 

machine learning models for CWS, which can be summarized as the feature absence 

problem.  Drawing the connection with language acquisition literature, we have 

speculated that a generative linguistic system may help overcome the limitations of 

current methods. This speculation is supported by some formal linguistic analysis of 

Chinese morphology. Finally, we have shown that recent results in relevant 

computational modeling suggests that it is indeed a promising direction to investigate 

generative word formation models in order to come up with better CWS system. 
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