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Abstract. Abductive reasoning algorithms formulate possible hypotheses to 

explain observed facts using a theory as the basis. These algorithms have been 

applied to various domains such as diagnosis, planning and interpretation. In 

general, algorithms for abductive reasoning based on logic present the 

following disadvantages: (1) they do not allow the explicit declaration of 

conditions that may affect the reasoning, such as intention, context and belief; 

(2) they allow little or no consideration for criteria required to select good 

hypotheses. Using Propositional Logic as its foundation, this study proposes the 

algorithm Peirce, which operates with a framework that allows one to explicitly 

include conditions to conduct abductive reasoning and uses a criterion to select 

good hypotheses that employs metrics to define the explanatory power and 

complexity of the hypotheses. Experimental results suggest that abductive 

reasoning performed by humans has the tendency to coincide with the solutions 

computed by the algorithm Peirce. 
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1 Introduction 

Abductive reasoning formulates hypotheses to explain observed facts using a theory 

as the basis. Numerous intellectual tasks make use of abductive reasoning, including 

medical diagnostics, fault diagnostics, scientific discovery, legal argumentation and 

interpretation. 

Abductive reasoning algorithms based on logic frequently operate with the Theory, 

Hypotheses and Facts (THF) ternary reasoning framework (as shown in [2], [4], [5] 

and [11]). When these algorithms are formalized using Propositional Logic (PL) [9], 

the THF framework is frequently instantiated according to Definition 1. 

Definition 1 (THF reasoning framework). The THF reasoning framework for 

abductive reasoning is a system 〈T, H, F〉 that consists of the following:  

 A finite and non-empty theory set, T = { t1, t2, t3, ..., tm }, of PL sentences denoting 

t1 ∧ t2 ∧ t3 ∧ ... ∧ tm. This set represents the hypotheses that must be assumed as truth 

during the reasoning process. 

53 Research in Computing Science 82 (2014)pp. 53–66

mailto:rodrigues_felipe7@hotmail.com
mailto:carlos.br@gmail.com


 A finite hypotheses set, H = { h1, h2, h3, ..., hn }, of PL sentences denoting h1 ∨ h2 ∨ 
h3 ∨ ... ∨ hn. This set represents the hypotheses that along with the set T explain the 

facts represented by the set F. 

 A set with a single fact, F = { f }, where f is a PL literal (atom or negated atom). 

This set represents an occurrence of an evidence, a manifestation, a symptom, an 

observation, a mark or a sign to be explained through abductive reasoning. 

Having the T and F sets as input, an abductive reasoning algorithm should find a 

set of hypotheses H that satisfies the following conditions: 

 T ⊭ F, (1) 

 T ∪ { h } ⊨ F, ∀ h ∈ H, (2) 

 T ∪ { h } ⊭ ⊥, ∀ h ∈ H, (3) 

 { h }⊭ F, ∀ h ∈ H. (4) 

The statements above refer to the concept of logical consequence described in 

Definition 2. 

Definition 2 (A ⊨ B, i.e., B is a logical consequence of A). Let A = { a1, a2, a3, ..., an 

} and B = { b1, b2, b3, ..., bm } be two finite and non-empty sets of PL sentences. Then, 

A ⊨ B if and only if the interpretations in which a1 ∧ a2 ∧ a3 ∧... ∧ an is true, b1 ∧ b2 ∧ 
b3 ∧... ∧ bm is also true. 

The condition (1) prevents that the theory set T alone has as logical consequence 

the facts set F. Hypotheses satisfying condition (2) are called candidate hypotheses, 

and they can explain the single fact denoted by F. Candidate hypotheses satisfying 

condition (3) are called consistent hypotheses. Conversely, candidate hypotheses that 

do not satisfy condition (3) are called inconsistent hypotheses and should be 

discarded. Candidate hypotheses that satisfy condition (4) are called explanatory 

hypotheses. Conversely, candidate hypotheses that do not satisfy condition (4) are 

called non-explanatory hypotheses and should be discarded. 

Example 1. Joseph has a large lawn in front of his house. One day, Joseph arrives at 

home and observes that the lawn is wet. Considering only that (1) rain can make the 

lawn wet and that (2) sprinklers installed across the lawn can make it wet, which 

hypotheses can explain the fact that the lawn is wet? 

One possible formalization using the THF framework consists in defining: 

 Propositions ‘r: Rain occurred’, ‘s: Sprinklers were activated’ and ‘w: Lawn is 

wet’. 

 A theory set T = { r → w, s → w }. 

 A fact set F = { w }. 

The theory set T and the fact set F satisfy condition (1), whereas a theory T1 = { r 

→ w, s → w, w } has F as its logical consequence; therefore T1 and F do not satisfy 

condition (1). Let H = { r, s, r ∧ s, r ∧ w, w } be a set of candidate hypotheses. Each 

hypothesis h ∈ H satisfies condition (2), and each hypothesis h ∈ { r, s, r ∧ s, w } 

satisfies condition (3), i.e., they are consistent. However, the hypothesis r ∧ w is 

inconsistent because T ∪ { r ∧ w } ⊨ ⊥; therefore, it must be discarded. Each 
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hypothesis h ∈ { r, s,  r ∧ s } satisfies condition (4); however, the hypothesis w is not 

explanatory because { w } ⊨ F; therefore, it must also be discarded. Thus, removing 

the inconsistent and non-explanatory hypotheses from H, we obtain H = { r, s, r ∧ s }. 

In general, abductive algorithms work as follows: having the theory set T and the 

fact set F as the input, the algorithm verifies whether or not the condition (1) has been 

satisfied; if the condition (1) is not satisfied, then there are no hypotheses to be 

formulated because F is a logical consequence of T; however, if the condition (1) is 

satisfied, then the algorithm formulates a finite set of possible hypotheses H that 

satisfies the condition (2). Next, the algorithm removes from H the hypotheses that do 

not satisfy the conditions (3) and (4), and thus returning the resulting set H as an 

answer by the algorithm. 

Some algorithms, however, include an additional step with the goal of letting in H 

only hypotheses considered good, according to extra-logical criteria. A criterion 

commonly used is “simplicity”, which considers, for example, an atomic hypothesis 

better than a composite hypothesis, e.g., r is better than r ∧ s. 

The need to represent conditions such as context, circumstance and intention is 

common and important when conducting abductive reasoning. For example, 

reasoning to make a medical diagnosis considering the context of diseases of a region. 

Operating with a THF reasoning framework, the existing algorithms to perform 

abductive reasoning have the disadvantage of forcing the representation of these 

conditions in the theory set T. This solution is not appropriate because representing 

conditions in the theory set T mischaracterizes the theory, making it less general and 

more ad hoc (specific to explain what one wants to explain). 

Abductive reasoning formulates hypotheses, and some of these hypotheses may be 

better at explaining the facts than others. Today we do not know, exactly, which 

criteria determine what makes a hypothesis better than another, authors from several 

fields [3] [8] [10] [13] [16] [17] have suggested that abductive reasoning involves the 

selection of good hypotheses. However, the existing abductive reasoning algorithms 

have the disadvantage of dedicating little or no consideration for criteria required to 

select good hypotheses. 

Many practical applications of reasoning require the definition of a set of n ≥ 2 

facts. However, the many existing algorithms have the disadvantage of operating with 

only a single fact. 

This work proposes an algorithm, called Peirce, that performs abductive reasoning, 

and this algorithm differs from the existing solutions mainly because (1) it works with 

a reasoning framework called TCHF (Theory, accepted Conditions, Hypotheses and 

Facts), thus allowing conditions to be explicitly represented; (2) it allows n ≥ 2 facts 

to be represented; and (3) it introduces a criterion to select good hypotheses that 

employ metrics to define the explanatory power and the complexity of the hypotheses. 

Section 2 describes the algorithm Peirce, dedicating particular attention to the 

design and operation of the TCHF reasoning framework (Subsection 2.1) and the 

definition of a criterion to select good abductive hypotheses (Subsection 2.2). The 

pseudocode for the algorithm Peirce is presented and discussed in Subsection 2.3. 

Section 3 details an experimental study conducted to verify whether the solutions 

computed by the algorithm Peirce tend to coincide with the abductive reasoning 
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performed by humans. Section 4 describes related works, highlighting the differences 

with this work. Section 5 presents the conclusions. 

2 The Algorithm Peirce 

The abductive reasoning algorithm proposed in this study has been named Peirce in 

honor of the American philosopher Charles Sanders Peirce, who created the concept 

of abductive reasoning [14]. The following subsections detail the reasoning 

framework used by the algorithm Peirce, a criteria to select good hypotheses and the 

pseudocode of the algorithm. 

2.1 TCHF Reasoning Framework 

The TCHF reasoning framework proposed in this study differs from the classic THF 

reasoning framework (Definition 1) by including the accepted conditions set C and by 

redefining the facts set F to allow the declaration of not just one single fact, but rather 

a finite number of one or more facts. The TCHF framework is formalized in 

Definition 3 and uses the PL sentences in HF form as specified in Definition 4. 

Definition 3 (TCHF reasoning framework). The TCHF framework for abductive 

reasoning is a system 〈T, C, H, F〉 consisting of the following: 

 A finite and non-empty theory set, T = { t1, t2, t3, ..., tm }, of PL sentences in HF 

form denoting t1 ∧ t2 ∧ t3 ∧ ... ∧ tm. This set represents the hypotheses that must be 

assumed as truth during the reasoning process. 

 A finite hypotheses set, H = { h1, h2, h3, ..., hn }, of PL sentences in HF form 

denoting h1∨ h2 ∨ h3 ∨ ... ∨ hn. This set represents the hypotheses that along with the 

sets T and C explain the facts represented by the set F. 

 A finite accepted conditions set, C = { c1, c2, c3, ..., cp }, of PL sentences in HF 

form denoting c1 ∧ c2 ∧ c3 ∧ ... ∧ cp. This set represents the conditions that must be 

assumed as truth during the reasoning process. 

 A finite and non-empty facts set F = { f1, f2, f3, ..., fq } of PL positive literals, 

denoting f1 ∧ f2 ∧ f3 ∧ ... ∧ fq. The role of this set is to represent evidences, 

manifestations, symptoms, observations, marks or signs to be explained by the 

abductive reasoning. 

Definition 4 (HF form). A sentence of PL in the HF form is an acyclic sentence 

written in one of the following formats:  

 a1 ∧ a2 ∧ a3 ∧ ... ∧ an, where ai (1 ≤ i ≤ n) are literals. 

 a1 ∨ a2 ∨ a3 ∨ ... ∨ an, where ai (1 ≤ i ≤ n) are negative literals. 

 a1 ∧ a2 ∧ a3 ∧ ... ∧ an → b1 ∧ b2 ∧ b3 ∧ ... ∧ bm, where ai (1 ≤ i ≤ n) are positive 

literals and bj (1 ≤ j ≤ m) are literals. 

 a1 ∨ a2 ∨ a3 ∨ ... ∨ an → b1 ∨ b2 ∨ b3 ∨ ... ∨ bm, where ai (1 ≤ i ≤ n) are literals and 

bj (1 ≤ j ≤ m) are negative literals. 
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The restriction of TCHF framework to sentences in the HF form aims to make the 

algorithm Peirce run the conversion of sentences in polynomial time, because 

sentences in HF form can be easily converted into Horn Clauses [9] (disjunction of 

literals with at most one positive literal). As will be described in Subsection 2.3, 

algorithm Peirce uses Resolution as the inference mechanism and this mechanism can 

be efficiently implemented on Conjunctive Normal Form (CNF) sentences with Horn 

Clauses. 

The set C gives the TCHF reasoning framework the advantage of allowing the 

explicit definition of conditions that in the classical THF framework, would normally 

be declared within the theory set T. Thus, the set C avoids “contaminating” the set T 

with sentences that fundamentally do not belong to the theory. Moreover, this makes 

it easier to represent two or more instances of abductive reasoning that share the 

declarations of T and F but differ in the set of accepted conditions. Example 2, which 

is described next, illustrates the use of the TCHF reasoning framework. 

Example 2. Consider once more the scenario described in Example 1 in which Joseph 

arrives at home and observes his lawn wet. However, let us say that Joseph knows 

that the water tank supplying the sprinklers has been empty for a month; therefore, 

under this condition, the sprinklers could not have been activated.  

One possible formalization using the TCHF framework is to define the following: 

 Propositions ‘r: Rain occurred’, ‘s: Sprinklers were activated’, ‘w: Lawn is wet’ 

and ‘t: Water tank that supplies sprinklers is empty’. 

 A theory T = { r → w, s → w }, which is the same as in Example 1. 

 A set of accepted conditions C = { t,  t → s }. 

 A set of facts F = { w }, which is the same as in Example 1. 

The conditions in abductive reasoning are motivated by several factors which are 

linked to context (information associated to space), circumstances (information 

associated with time), intention (manifestation of the will to reach some wanted 

conclusions), belief or faith (information that is accepted on principle) etc. Examples 

of specific conditions used in abductive reasoning are as follows: (1) In abductive 

reasoning used for medical diagnoses, regional context may allow one to specify a set 

of diseases that are common or uncommon for a given region; (2) In abductive 

reasoning used for anthropological studies, the specification of possible agents that 

might have been responsible for the death of a hominid based on the knowledge that 

the hominid lived 4 million years ago (circumstance); (3) In abductive reasoning for 

judicial decisions, possible conditions may be specified with the intent of acquitting 

(or condemning) a defendant; and (4) In abductive reasoning for religious or 

metaphysical beliefs, the faith or belief that there is life after death can be declared as 

a condition upon which reasoning are made. 

Taking the sets T and F as inputs, an abductive reasoning algorithm operating with 

the TCHF framework should find a set of hypotheses H that satisfies the following 

conditions: 

 T ∪ C ⊭ F, (5) 

 T ∪ C ∪ { h } ⊨p F, ∀ h ∈ H, (6) 
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 T ∪ C ∪ { h } ⊭ ⊥, ∀ h ∈ H, (7) 

The condition (6) uses the partial logical consequence as defined in Definition 5.  

Definition 5 (A ⊨p B, i.e., B is a partial logical consequence of A). Let A = { a1, a2, 

a3, ...,  an }, B = { b1, b2, b3, ..., bm } and C = { c1, c2, c3, ..., cq }, C ⊆ B, be three finite 

and non-empty sets of PL sentences. Then, A ⊨p B if only if the interpretations in 

which a1 ∧ a2 ∧ a3 ∧... ∧ an is true, c1 ∧ c2 ∧ c3 ∧... ∧ cq is also true. 

2.2 Selection of Good Abductive Hypotheses 

In general, several hypotheses may be able to explain observed facts. However, 

certain hypotheses may explain facts better than others. Therefore, abductive 

reasoning can be observed as a process that formulates m ≥ 1 general hypotheses 

followed by the selection of n ≤ m good hypotheses. Naturally, selection criteria must 

be established, but it is still difficult to define the conditions that make a hypothesis 

good. 

Contemporary philosophers have analyzed the issue of selecting good hypotheses. 

Harman [8] considers abduction to be an inference of the best explanation and argues 

that the best hypothesis is the simplest, most plausible and is the least ad hoc. By 

comparing theories (e.g., Darwin’s Theory of Evolution vs. Creationist Theory or 

Lavoisier’s Theory of Combustion vs. Phlogiston Theory), Thagard [16, 17] establish 

criteria that explain the preference for one hypothesis over another and considers the 

best hypothesis to be the most consilient (explains more facts), the most simple, and it 

would provide the best analogy with hypotheses that explain facts in other domains. 

Criteria to select good hypotheses have been extensively studied in the fields of 

philosophy (e.g., [2] [8] [16]), psychology (e.g., [13]) and artificial intelligence (e.g., 

[3] [10] [15]). However, the precise formulation of these criteria remains 

controversial. In general, factors such as the “explanatory power” and the 

“complexity” of a hypothesis are recurrent and have similar connotations across 

several studies. Therefore, this study has proposed using these two factors to develop 

a selection criterion. Aiming at the development of algorithms to perform abduction 

that need dealing with quantitative measures for the explanatory power and the 

complexity of a hypothesis, this study proposes an understanding of these factors as 

follows: 

 Explanatory power (or comprehensiveness): the explanatory power of a hypothesis 

quantifies the degree to which it is capable of explaining the facts involved in the 

reasoning. A metric for a hypothesis’ explanatory power is given by the ratio 

between the number of facts it can explain and the total number of facts to be 

explained by the abductive reasoning process. For example, a hypothesis that 

explains 4 out of 5 facts has an explanatory power of 4/5, and a hypothesis that 

explains all of the facts has an explanatory power of 1. 

 Complexity: the complexity factor refers to how many different elements and 

relationships are present in a hypothesis. A metric for hypothesis complexity is the 

number of atomic propositions that it contains. For example, hypothesis r has a 

complexity of 1, and hypothesis r ∧ s ∧ w has a complexity of 3. 
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Based on the metrics for explanatory power and complexity, this study proposes a 

criterion to select good hypotheses, which is declared in Definition 6. 

Definition 6 (A criterion to select good hypotheses). Given a set H of candidate 

hypotheses to explain a set F of facts, h ∈ H is considered a good hypothesis if it 

satisfies all the following conditions: 

 The explanatory power of h is equal to or greater than a constant λ1. The constant 

λ1 = 0.5 has been used in the experiments described in this article. 

 The complexity of h is equal to or less than a constant λ2. The constant
1
 λ2 = 5 has 

been used in the experiments described in this article. 

 The hypothesis h has the minimum complexity among all of the hypotheses that 

have the maximum explanatory power in H. 

Examples 3 and 4 illustrate the application of Definition 6.  

Example 3. Diseases manifest themselves through symptoms. Consider the 

following: 

 Propositions ‘c: Disease is cold’, ‘p: Disease is pneumonia’, ‘r: Disease is 

rhinitis’, ‘f: Symptom is fever’, ‘h: Symptom is headache’, and ‘z: Symptom is 

coryza’; 

 Theory T = { p → f ∧ z ∧ h, c → f ∧ z,  r → h ∧ z }, the empty set C = {  } of 

accepted conditions and observed facts set F = { f, z, h } (symptoms); 

 A set of candidate hypotheses H = { p, c, r, p ∧ c, p ∧ r, c ∧ r, p ∧ c ∧ r }. 

Table 1 describes the explained facts, explanatory power and complexity of each 

candidate hypothesis h ∈ H. 

Table 1. Explained facts, explanatory power and complexity of candidate hypothesis of the 

Example 3. The ‘√’ signals an explained fact. 

Hypothesis 
Explained facts 

Explanatory power Complexity 
f z h 

p √ √ √ 1 1 

c √ √  0.66 1 

r  √ √ 0.66 1 

p ∧ c √ √ √ 1 2 

p ∧ r √ √ √ 1 2 

c ∧ r √ √ √ 1 2 

p ∧ c ∧ r √ √ √ 1 3 

All of the hypotheses have an explanatory power equal to or greater than λ1 = 0.5 

and complexity equal to or less than λ2 = 5. The hypotheses p, p ∧ c, p ∧ r, c ∧ r, p ∧ c 

∧ r have explanatory power equal to 1, which is the maximum among all candidate 

                                                           
1  The λ1 and λ2 values were chosen to coincide with human factors. Considering Miller 

experiment [12], human memory and human processing capacity is limited to 7 ± 2 

simultaneous elements, hence λ2 = 5. Good hypotheses explain at least 50% of the facts, 

hence λ1 = 0.5. 
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hypotheses. Among these hypotheses with maximum explanatory power, hypothesis p 

has the complexity equals to 1, which is the minimum among the hypotheses. 

Therefore, p is a good hypothesis according to Definition 6.   

Example 4. Another example involving diseases and symptoms. Consider the 

following: 

 Propositions ‘d: Disease is dengue’, ‘u: Disease is flu’, ‘b: Symptom is 

breathlessness’, ‘f: Symptom is fever’, ‘h: Symptom is headache’, ‘m: Symptom 

is muscle pain’, ‘r: Symptom is red spots’ and ‘s: Symptom is sneezing’; 

 Theory T = { u → f ∧  h ∧ m ∧ s, d → f ∧ h ∧ m ∧ r }, the empty set C = {  } of 

accepted conditions and observed facts set F = { f, h, m, b } (symptoms); 

 A set H = { u, d, u ∧ d } of candidate hypotheses. 

Table 2 describes the explained facts, explanatory power and complexity of each 

candidate hypothesis h ∈ H. 

Table 2. Explained facts, explanatory power and complexity of candidate hypothesis of the 

Example 4. The ‘√’ signals an explained fact. 

Hypothesis 
Explained facts 

Explanatory power Complexity 
f h m b 

U √ √ √  0.75 1 

D √ √ √  0.75 1 

u ∧ d √ √ √  0.75 2 

All of the hypotheses have an explanatory power equals to 0.75 (i.e., explanatory 

power equal to or greater than λ1 = 0.5) and complexity equal to or less than λ2 = 5. 

Hypotheses u and d have a complexity of 1, which is the minimum across all of the 

candidates. Therefore, u and d are good hypotheses according to Definition 6. 

2.3 Pseudocode for the Algorithm Peirce 

Figure 1 presents the pseudocode for the algorithm Peirce. The algorithm Peirce 

formulates hypotheses that comply with equations (5), (6), (7) and the criterion to 

select good hypotheses of the Definition 6. Synthetically, the algorithm Peirce 

formulates candidate hypotheses and stores them in set H (line 11). Next, the 

algorithm removes inconsistent hypotheses from H (line 12) and then selects and 

leaves only the good hypotheses in H (line 13). The details of the algorithm are 

described below. 

The algorithm uses the Resolution rule of inference for PL sentences in CNF 

expressed with Horn Clauses [9]. Candidate hypotheses are hypotheses h that satisfy 

equation (6). To compute these hypotheses, the algorithm translates the set of 

sentences T ∪ C ∪ ¬F to CNF expressed with Horn Clauses (line 4) and applies the 

mechanism of resolution (line 5). The result of the resolution is stored in the data 

structure R (set of clauses). If R contains at least one empty clause, then T ∪ C ⊨ F 

and no hypotheses are formulated (lines 6 and 7). If R does not contain an empty 
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clause, then T ∪ C ⊭ F, equation (5) is met and candidate hypotheses can be 

formulated.  

At line 11 each clause in R presents the possibility of formulating a hypothesis. 

Because R is in CNF, negating each clause results in a candidate hypothesis. The 

algorithm Formulate_Candidate_Hypotheses (line 11), operates as follows: (1) 

the algorithm negates each of the m ≥ 1 clauses in R to obtain m first-candidates 

hypotheses h1, h2, h3, ..., hm, (2) combines these m first-candidates hypotheses in pairs 

to obtain conjunctive hypotheses of the type hi ∧ hj (i ≠ j); and (3) combines the m 

first-candidates hypotheses three by three to obtain conjunctive hypotheses of the type 

hi ∧ hj ∧ hk (i ≠ j ≠ k); … and then combines the m first-candidates hypotheses q by q 

to obtain conjunctive hypotheses of the type hi ∧ hj ∧ ... ∧ hq (i ≠ j ≠ ... ≠ q), where q = 

min (m, λ2) and is λ2 the constant that defines the maximum complexity of the 

hypotheses (λ2 is defined in Definition 6). 

Algorithm Peirce(T, C, F) 

Input 

Theory set T, accepted condition set C and facts set F 

(specification is given in Definition 3). 

Output 

Hypotheses set H (specification is given in Definition 3). 

1  { 

2    if Consistent(T, C) then 

3    { 

4      R := Conjunctive_Normal_Form_Horn_Clauses(T, C, ¬F); 

5      R := Resolution(R); 

6      if R contains an empty clause then 

7        write (“No hypotheses to formulate: T ∪ C ⊨ F”); 

9      else 

10     { 

11       H := Formulate_Candidate_Hypotheses(R); 

12       H := Remove_Inconsistent_Hypotheses(T, C, H); 

13       H := Select_Good_Hypotheses(T, C, H, F); 

14     } 

15   } 

16   else 

17     write(“Unable to formulate hypotheses: T ∪ C ⊨ ⊥.”); 

18 } 

Fig. 1. Algorithm Peirce. 

At line 12, the algorithm Remove_Inconsistent_Hypotheses receives a set H 

of candidate hypotheses and removes from H hypotheses that do not satisfy T ∪ C ∪ { 

h } ⊭ ⊥ (conformity to equation (7)). The algorithm works as follows:  For each h ∈ 

H: (1) the algorithm translates the sentences in the set T ∪ C ∪ { h } to CNF 

expressed with Horn Clauses, (2) applies the Resolution mechanism to this system of 
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sentences and (3) removes hypothesis h from H if the Resolution mechanism derives 

an empty clause.   

The algorithm Select_Good_Hypotheses receives a set H of candidate 

hypotheses that are all consistent and then operates as follows: (1) it computes the 

explanatory power and complexity of each hypothesis h ∈ H, (2) removes all of the 

hypotheses h with explanatory power below some constant λ1 (0.5 in our experiments) 

or complexity above some constant λ2 (5 in our experiments), (3) computes set E with 

the hypotheses that have the maximum explanatory power in H, (4) computes set X 

with the hypotheses that have the minimum complexity in E and (5) returns set X as 

answer. 

It can be proved that the Peirce algorithm computes three different types of 

solutions: (1) H = F when the theory and the accepted conditions does not allow 

Peirce algorithm to formulate explanatory hypotheses; (2) H = { } when Peirce 

algorithm does not consider any hypotheses to be good, among the candidate 

hypotheses; (3) H contains at least one explanatory hypothesis; In this last type, H 

does not contain non-explanatory hypothesis.      

Example 5 illustrates a run of the algorithm Peirce. 

Example 5. This example illustrates the execution of the algorithm Peirce using the 

scenario and formalization from Example 2. Therefore, the algorithm Peirce receives 

as input the theory T = { r → w, s → w }, the set of accepted conditions C = { t, t → 

s } and the set of facts F = { w }. Because T ∪ C ⊭ ⊥, algorithm Consistent(T, 

C)returns the value true (line 2), and the data structure R is filled in with T ∪ C ∪ ¬F 

in CNF expressed with Horn Clauses. The following is then established: 

 At line 4: R = { { r, w }, { s, w }, { t }, { t, s }, { w } }; 

 At line 5 after Resolution:  R = { { r }, { s } }. 

Because there are no empty clauses in R (test at line 6), the candidate hypotheses 

are formulated at line 11. Thus, H = { r, s, r ∧ s } at line 11 after executing 

Formulate_Candidate_Hypotheses. Because T ∪ C ∪ { s } ⊨ ⊥ and T ∪ C ∪ { r 

∧ s } ⊨ ⊥, hypotheses s and r ∧ s are removed from H by the algorithm 

Remove_Inconsistent_Hypotheses (line 12), leaving H = { r }. The hypothesis 

r has an explanatory power of 1, a complexity of 1 and the minimum complexity of 

all hypotheses with maximum explanatory power in H (r is the only hypothesis in H), 

therefore the algorithm Select_Good_Hypotheses (line 13) selects r as a good 

hypothesis. The algorithm Peirce thus returns as answer H = { r }. 

In general, the complexity of logic-based abduction is NP-complete [6]. However, 

the algorithm Peirce has a running time O(n
2+λ₂). As λ2 is a constant, typically equals 

to 5, Pierce algorithm runs in polynomial time.  This occurs by the following facts. 

The algorithm Conjunctive_Normal_Form_Horn_Clauses has running time O(n) 

because since every sentence of T, C and F is restricted to HF form (Definition 4) 

they can be transformed directly into Horn Clauses in O(1). The execution of the 

Resolution mechanism of the PL sentences in CNF with Horn Clauses can be done in 

O(n
2
). Thus, Consistent and Resolution algorithms have running time O(n

2
). The 

algorithm Formulate_Candidate_Hypotheses has a running time of O(nλ₂) 

because produces at most hypotheses combinations O(n
2
) + O(n

3
) + … + O(nλ₂). The 
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algorithm Remove_Inconsistent_Hypotheses has a running time of O(n
2+λ₂) 

because executes at most a constant amount of O(nλ₂) resolutions each of them in 

O(n
2
). The algorithm Select_Good_Hypotheses has a running time of O(n log n), 

to sort and select the set of hypotheses with minimal complexity among the 

hypotheses with maximum explanatory power. 

3 Tendency of Solutions Computed by the Algorithm Peirce to 

Coincide with Abductive Reasoning Done by Humans 

A study was realized to verify whether the abductive reasoning performed by humans 

tends to coincide with the solutions computed by the algorithm Peirce. The study was 

conducted using a questionnaire containing ten questions, with each question 

presenting an implicit description of a theory, observed facts and accepted conditions. 

The alternatives for each question present possible abductive hypotheses. Table 3 

illustrates in the left column one question in the questionnaire.  

Table 3. Example of a question used in the questionnaire. The left column describes the 

question itself, and the right column presents the corresponding formalization to the question 

and solution as computed by the algorithm Peirce. 

Question Formalization and solution computed by the algorithm 

Peirce 

Joshua is in the desert and 

sees something green in the 

distance. What would best 

explain what Joshua sees?  

a) I am convinced that it is a 

lawn. 

b) I am convinced that it is a 

cactus. 

c) I am convinced that it is a 

green flag. 

d) It could be either a cactus 

or a green flag. 

Propositions: 

‘c: It is a cactus’, ‘d: It is a desert’, ‘f: It is a green flag’, ‘l: 

It is a lawn’, ‘s: Joshua sees something green’. 

T = { l → s, c → s, f → s }, C = { d, d → l }, F = { s }. 

Solution  

- After formulating candidate hypotheses (line 11): 

H = { l, c, f, l ∧ c, l ∧ f, c ∧ f, l ∧ c ∧ f }. 

- After removing inconsistent hypotheses (line 12): 

H = { c, f, c ∧ f }. 

- After selecting good hypotheses (line 13):  

H = { c, f }, i.e., the alternative ‘d’ coincides with the 

solution of algorithm Peirce. 

The questionnaire, validated by a pilot-test with 25 individuals, was designed to be 

answered in 15 minutes. A total of 133 undergraduate and graduate students 

participated in the study. The profile of the participants showed a slight predominance 

of female individuals (53%) and ages ranging from 18 to 60 years, with an average 

and median close to 25 years. 

Each participant’s answers to the questionnaire were computed, and one point was 

attributed to each answer on the questionnaire that coincided with a solution produced 

by the algorithm Peirce. The results showed an average of 86 answers coinciding with 

the algorithm Peirce and 47 that did not coincide. 
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The Chi-square (χ2) test at 1% significance was used as a statistical measure of the 

significance with which the participants’ answers coincided with solutions produced 

by the algorithm Peirce. For the studied population, the 
2
 test suggested that the 

coincidence between the participants’ answers and the solutions computed by the 

algorithm Peirce was significant: (
2
 (1) = 11.44, p–value = 0.001 < 0.01). 

4 Related Works 

Different approaches have been used to develop algorithms for abductive reasoning. 

Among the many contributions, there are proposals that use search techniques [15] 

and probabilistic reasoning over Bayesian Networks [7]. Logic approaches are based 

on two types of contributions: (1) proposal of new algorithms and (2) extension of 

traditional logical programming to process abductive reasoning problems. 

Examples of type 1 contributions include [2] and [5]. Both of the proposals refer to 

abductive reasoning algorithms that operate with a THF reasoning framework 

(Definition 1). The main differences between these proposals and those of the present 

study are as follows: (1) They allow only one fact to be declared; (2) They do not 

allow define explicitly a set of accepted conditions; and (3) Semantic Tableaux is 

used in the proposal described in [2] instead of Resolution as the mechanism of 

inference. 

Contributions of type 2 include Abductive Logic Programming (ALP) [11] and use 

the languages Prolog with Constraint Handling Rules (CHR) [1] [4]. The main 

differences between these proposals and those of the present study are as follows: (1) 

They operate with Predicate Logic; (2) They require special “abducible” predicates 

(possible hypotheses) to be declared; and (3) They dedicate little attention to criteria 

to select good abductive hypotheses. 

Studies related to the one presented here, that address the selection of good 

hypotheses, include [8], [16] and, recently, [3]. This work differs from proposals [8] 

and [16] mainly by the proposed metrics for complexity and explanatory power of 

hypotheses. 

5 Conclusions 

The abductive reasoning algorithm Peirce is distinct from other solutions mainly 

because it employs the TCHF reasoning framework and a simple criterion for 

selecting good hypotheses that consider quantitative metrics to define the explanatory 

power and complexity of the formulated hypotheses. 

The TCHF reasoning framework has shown itself to be useful in organizing the 

elements that participate in abductive reasoning because it does not “contaminate” the 

theory with sentences that fundamentally do not belong to the theory. This framework 

provides an additional advantage because it explicitly exposes the conditions 

(contexts, circumstances, intentions etc.) under which the reasoning process is 

conducted, which is fundamental and frequent in the formulation of abductive 

reasoning. 
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The criteria for selecting good hypotheses are subjects of ongoing research. There 

is no consensus as to which criteria should be used and under which circumstances or 

in which domains they work. The criterion used by the algorithm Peirce, which is 

described in Definition 6, attempt to produce a simple algorithm that works in 

practice. Alternatives to Definition 6 exist and can be proposed. 

The study that depicted the coincidence of the solutions computed by the algorithm 

Peirce to those derived through abductive reasoning performed by humans was not 

exhaustive because there is such a high number of domains, and it did not include the 

diversity and quantity of individuals. However, these results provided value 

suggesting that the abductive reasoning conducted by humans tends to coincide with 

the solutions computed by the algorithm Peirce. 
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