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Abstract. This study shows the mathematical modeling and the deve-
lopment of the simulator of a simple biped system in Matlab c©. We used
specific libraries of Matlab c© that allowed us to simulate mechanical
systems. In order to design the 3D model, we used SolidWorks c©.
The biped system is based on the structure of lower limb exoskeleton
which is used in medical rehabilitation. We present the dynamic model
calculation of the biped system through Euler-Lagrange method, and the
stability analysis using Lyapunov theory. We present the implementation
of a tracking control structure using a trajectory defined by fifth-order
polynomials. The main consideration in this work is that the system is
free of interaction with the environment, i.e. , we discussed the ideal case.

Keywords: Simulator, dynamic model, biped system, lower limbs, fifth-
order polynomial

1 Introduction

A computer simulation is an attempt to model a real-life or hypothetical situa-
tion on a computer so that it can be studied to see how the system works. By
changing variables in the simulation, predictions may be made about the be-
haviour of the system. Simulator is a program that simulates specific conditions
or the characteristics of a real process or machine for the purposes of research
or study. Currently, simulators are being increasingly used in different areas of
knowledge. Simulators in engineering are used in the design of complex systems.
The results obtained in the analysis of data allow us to understand and improve
the performance of the system[1]. An approach in robotics is the autonomous
or semi-autonomous system design with ability to interact with its environment.
Since complexity of robot control is increasing, simulators are becoming essential
tools to understand the behavior of the system. The simulation allow us to
enhance the design of the system and eliminate mechanical failures, before
building the prototype[2, 3]. The study of the bipedal robots has been around for
more than three decades and there are still problems to be solved. Accordingly,
this paper is focused on the development of a simulator based on a simple biped
system with the purpose to study the major physical characteristics.
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2 Modeling of the System

The fixed frame is located at the base of the hip. The system is divided into 2
subsystems, right leg {SPD} and left leg {SPI}. The first step is to obtain the
forward kinematics of the system. The forward kinematics consists in obtaining
the spatial location of the links with respect to a fixed coordinate system [4].
In order to analyze the system we requires a motion diagram, Fig. 1(a). The
diagram is used to obtain the forward kinematics.

(a) coordinate system (b) Mass distribution

Fig. 1. Biped system frame

The forward kinematics is the first and most important step for the application
of Euler-Lagrange method. The diagram of mass distribution is used for the
analysis of velocity for each leg, Fig. 1(b).

2.1 Forward Kinematics Model

In order to obtain the homogeneous transformation matrices (spatial location of
each link) we used the Denavit-Hartenberg algorithm [5]. The location of each
link is obtained with respect to the fixed reference system located at the base of
the system, Fig. 1(a).
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The transformation matrices for {SPD} are the following:

BA0d =

⎡
⎢⎢⎣

0 0 1 L

0 1 0 0
−1 0 0 0
0 0 0 1

⎤
⎥⎥⎦ (1)

BA1d =

⎡
⎢⎢⎣

0 0 1 L

sin (θ1) cos (θ1) 0 l1 sin (θ1)
− cos (θ1) sin (θ1) 0 −l1 cos (θ1)

0 0 0 1

⎤
⎥⎥⎦ (2)

BA2d =

⎡
⎢⎢⎣

0 0 1 L

Sθ12 Cθ12 0 l2Sθ12 + l1Sθ1
−Cθ12 Sθ12 0 −l2Cθ12 − l1Cθ1

0 0 0 1

⎤
⎥⎥⎦ (3)

BA3d =

⎡
⎢⎢⎣

0 0 1 L

Sθ123 Cθ123 0 l3Sθ123 + l2Sθ12 + l1Sθ1
−Cθ123 Sθ123 0 −l3Cθ123 − l2Cθ12 − l1Cθ1

0 0 0 1

⎤
⎥⎥⎦ (4)

where Sθ1 = sin (θ1), Cθ1 = cos (θ1), Sθ12 = sin (θ1 + θ2), Cθ12 = cos (θ1 + θ2),
Cθ123 = cos (θ1 + θ2 + θ3) y Sθ123 = sin (θ1 + θ2 + θ3).
{SPI} has the same equations that {SPD}, the only difference is the position of
the x-axis since L is now −L and it is evaluated with the corresponding angles,
as seen in Fig. 1(a).

2.2 Dynamic Model

In the design of robots, control algorithms and simulators is important to con-
sider the equations of motion [5]. We introduce the Euler-Lagrange equations,
which describe the evolution of a mechanical system. The equation of motion is
the following:

d

dt

⎡
⎣∂L

(
θ, θ̇

)
∂θ̇

⎤
⎦−

∂L
(
θ, θ̇

)
∂θ

= τ (5)

where θ ∈ R
n is the vector of generalized joint coordinates, τ ∈ R

n is the vector

of torques that act in the joints, and L
(
θ, θ̇

)
is know as Lagrangian, which is

the difference between the kinetic and potential energy:

L
(
θ, θ̇

)
= K

(
θ, θ̇

)
− U (θ) (6)

Considering that the biped system had no interaction with the environment, we
can identify the input variables as the applied torques and the output variables
as the positions[5].
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By solving the Euler-Lagrange equation of motion described in (5) we obtain
the dynamic model. The dynamic model is defined as:

M (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + g (θ) = τ (7)

where θ ∈ R
n is the vector of generalized joint coordinates, M (θ) ∈ R

n×n is

the symmetric positive definite inertia matrix, C
(
θ, θ̇

)
∈ R

n×n is the matrix of

centripetal and Coriolis torques, g (θ) ∈ R
n is the vector of gravitational torques,

τ ∈ R
n is the vector of torques that act in the joints. Assuming for simplicity

that all robots have revolute joints, we can set the following properties [5]:

Property 1 M (θ) satisfies λm‖x‖2 ≤ xTMx ≤ λM‖x‖2 ∀θ, x ∈ R
ni where

λm
Δ
= min

∀θ∈Rni

λmin (M), λM
Δ
= max

∀θ∈Rni

λmax (M), and 0 < λm ≤ λM < ∞.

�

Property 2 M(θ) satisfies 0 < λm ≤ ‖M (θ)‖ ≤ λM < ∞.

�

Property 3 M−1 satisfies σm‖x‖2 ≤ xTM−1x ≤ σM‖x‖2∀θ, x ∈ R
ni ,

σm
Δ
= min

∀θ∈R
ni

λmin

(
M−1

)
, and 0 < σm ≤ σM < ∞. M−1 satisfies 0 < σm ≤∥∥M−1

∥∥ ≤ σM < ∞.

�

Property 4 M (θ) has the following relationship with the kinematic energy

K
(
θ, θ̇

)
=

1

2
θ̇TM (θ) θ̇.

�

Property 5 The vector C (θ, x) y satisfies C (θ, x) y = C (θ, y)x ∀x, y ∈ R
n.

�

Property 6 With the proper definition of C
(
θ, θ̇

)
, the matrix

1

2
θ̇T

[
Ṁ (θ)− 2C

(
θ, θ̇

)]
θ̇ ≡ 0 is skew-symmetric.

�

Property 7 CT
(
θ, θ̇

)
=

1

2

∂

∂θ

[
θ̇TM (θ) θ̇

]
.

�
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The dynamic model for {SPD} is defined as:

⎡
⎣m11 m12 m13

m12 m22 m23

m13 m23 m33

⎤
⎦
⎡
⎣ θ̈1
θ̈2
θ̈3

⎤
⎦+

⎡
⎣ c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤
⎦
⎡
⎣ θ̇1
θ̇2
θ̇3

⎤
⎦+

⎡
⎣g1
g2
g3

⎤
⎦ =

⎡
⎣ τ1
τ2
τ3

⎤
⎦ (8)

where

m11 = m1l
2

c1 +m2l
2

1 +m3l
2

1 +m2l
2

c2 +m3l
2

2 + 2 (m2lc2l1 +m3l2l1) cos (θ2)

+m3l
2

c3 + 2m3lc3l2 cos (θ3) + 2m3lc2l1 cos (θ2 + θ3) + I1 + I2 + I3 (9)

m12 = m2lc2 +m3l
2

2 + (m2lc2l1 +m3l2l1) cos (θ2) + 2m3lc3l2 cos (θ3)

+m3lc3l1 cos (θ2 + θ3) +m3l
2

c3 + I2 + I3 (10)

m13 = m3l
2

c3 +m3lc3l2 cos (θ3) +m3lc3l1 cos (θ2 + θ3) + I3 (11)

m22 = m2l
2

c2 +m3l
2

2 +m3l
2

c3 + 2m3lc3l2 cos (θ3) + I2 + I3 (12)

m23 = m3l
2

c3 +m3lc3l2 cos (θ3) + I3 (13)

m33 = m3l
2

c3 + I3 (14)

c11 = −2 (m2lc2l1 +m3l2l1) sin (θ2) θ̇2 − 2m3lc3l2 sin (θ3) θ̇3

+2m3lc3l1 sin (θ2 + θ3)
(
θ̇2 + θ̇3

)
(15)

c12 = −2m3lc3l2 sin (θ3) θ̇3 −m3lc3l1 sin (θ2 + θ3)
(
θ̇2 + θ̇3

)
(16)

c13 = −m3lc3l2 sin (θ3) θ̇3 −m3lc3l1 sin (θ2 + θ3)
(
θ̇2 + θ̇3

)
(17)

c21 = (m2lc2 +m3l2) l1 sin (θ2) θ̇1 +m3lc3l1 sin (θ2 + θ3) θ̇1

−2m3lc3l2 sin (θ3) θ̇3 (18)

c22 = −2m3lc3l2 sin (θ3) θ̇3 (19)

c23 = −m3lc3l2 sin (θ3) θ̇3 (20)

c31 = m3lc3l2 sin (θ3) θ̇1 + 2m3lc3l2 sin (θ3) θ̇2 +m3lc3l1 sin (θ2 + θ3) θ̇1 (21)

c32 = m3lc3l2 sin (θ3) θ̇2 (22)

c33 = 0 (23)

g1 = [m1lc1 +m2l1 +m3l1] sin (θ1) + [m2lc2 +m3l2] sin (θ1 + θ2)

+m3lc3 sin (θ1 + θ2 + θ3) (24)

g2 = [m2lc2 +m3l2] g sin (θ1 + θ2) +m3lc3g sin (θ1 + θ2 + θ3) (25)

g3 = m3lc3g sin (θ1 + θ2 + θ3) (26)

Owing to similarity of the reference system definition for both subsystems,
{SPI} has the same equations as {SPD}, except that it was evaluated with
θ4, θ5 and θ6.
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2.3 Control Structure

In order to move the joints from an initial point to desired point (position control)
or move the joints along a defined trajectory (control of movement), we applied
a control structure, which allows the system to perform the assigned task [5].
The control structure is defined as follows:

τ = Kpθ̃ +Kv
˙̃
θ + g (θ) (27)

where Kp,Kv ∈ R
n×n are the proportional and derivative gains, respectively.

The control structure described in (27) use the positions, velocity and gravita-
tional torque information [5]. Note that the system is controlled in closed-loop
as shown in Fig. 2.

+
−

θd
θ̃

Control
τ

System

θ

θ

τ = Kpθ̃ +Kv
˙̃
θ + g (θ)

M (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + g (θ) = τ

Fig. 2. System with control loop (inputs and outputs)

Demonstration of Stability. In order to demonstrate the stability of the
system and the control structure, we use the Lyapunov theory. The first step is
to design the matrices Kp and Kv such that the position error θ̃ asymptotically

vanishes, i. e. limt→∞ θ̃(t) = 0 ∈ R
n[5].

The closed-loop system equation obtained by combining the dynamic model
described in (7), and control structure in (27), can be written as:

d

dt

[
θ̃

θ̇

]
=

[
−θ̇

M(θ)−1

[
Kpθ̃ −Kvθ̇ − C(θ, θ̇)θ̇

]] (28)

(28) is known as closed-loop equation, which is an autonomous differential equa-
tion. Therefore, the origin of the state space is its unique equilibrium point[5]. In
order to carry out the stability analysis of (28), the following Lyapunov function
candidate based on the energy shaping methodology was proposed [5]:

V (θ̇, θ̃) =
θ̇TM(θ)θ̇

2
+

θ̃TKpθ̃

2
(29)

Since M(θ) is a positive definite matrix the first term of V (θ̇, θ̃) is a positive
definite function with respect to θ̇. The second one term is a positive definite
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function with respect to position error θ̃, becauseKp is a positive definite matrix.

Therefore V (θ̇, θ̃) is a globally positive definite and radially unbounded func-
tion[5]. The derivative of Lyapunov function candidate (29) along the trajectories
of the closed-loop (28) is:

V̇ (θ̇, θ̃) = θ̇TM(θ)θ̈ +
θ̇T Ṁ(θ)θ̇

2
+ θ̃TKp

˙̃
θ (30)

and after some algebra and using the Property 6 it can be written as:

V̇ (θ̇, θ̃) = −θ̇TKvθ̇ ≤ 0, (31)

which is a globally negative semidefinite function. Therefore, we concluded sta-
bility of the equilibrium point. In order to prove asymptotic stability, we applied
the LaSalle invariance principle

V̇ (θ̇, θ̃) < 0. (32)

In the region

Ω =

{[
θ̃

θ̇

]
∈ R

n : V (θ̃, θ̇) = 0

}
(33)

the unique invariant is
[
θ̃T θ̇T

]T
= 0 ∈ R

2n[5].

2.4 Planning of Trajectory

The biped system consisting of hip, knee and ankle must perform the movements
of the human walking. In order to define the desired trajectory, we used the
sagittal-plane motion of the lower extremity, Fig. 3 [6].

Fig. 3. Sagittal-plane motion of lower extremity during one gait cycle
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The trajectory of human walking was define using fifth order polynomials. These
polynomials restrict the positions, velocities and accelerations and generate soft
movements [7]. A path from θi to θf is defined as a continuous map, τ : [0, 1] → Q,
with τ(0) = θi and τ(1) = θf . A trajectory is a function of time θ(t) such that
θ(t0) = θi and θ(tf ) = θf . In this case, tf−t0 represents the amount of time taken
to execute the trajectory. Since the trajectory is parameterized by time, we can
compute velocities and accelerations along the trajectories by differentiation. If
τ is time-dependent then a path is a special case of a trajectory, one that will
be executed in one unit of time. In other words, in this case, τ gives a complete
specification of the robot’s trajectory, including the time derivatives (knowing
the differentiate τ , we can obtain time derivatives) [7].

3 Design of the 3D System

The proposed biped system has 6 degrees of freedom. The joints of the system
are rotational. In the middle of the hip is located the base of the system, Fig.
4(a). The biped system is based on lower limb exoskeleton, Fig. 4(b). The
system is drawn in SolidWorks c©.

Hip 1

Knee 1

Ankle 1

Hip 2

Knee 2

Ankle 2

Fixed frame

(a) SolidWorks
c© design (b) Exoskeleton of lower limbs

Fig. 4. Biped system

Prismatic joints (translation movement) is one of the options to design a lower

limb rehabilitation system. The main advantage of this technique is the simplicity
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in the modeling and implementation. However, designing a biped system con-
sidering rotational joints has the advantage of better leg kinematic description
[8].
SolidWorks c© allows us to applying the finite element analysis and define
the physical properties of each element. These information is needed for move-
ment modeling. Matlab c© combines the physical properties, the dynamic model
(mathematical representation of the system) and specific libraries in a program-
ming environment [9].

4 Simulator Designing

We need several elements in order to develop the simulator: the dynamic model

which describes the system’s response to internal or external stimuli, the control
law which controls the actions of the system to perform the task, the 3D model
that allows us to visualize the system movements, and the physical parame-
ters which give the system its physical characteristics, as seen in Fig. 5. The
programming environment is Matlab c©.

Dynamic model

Control law

3D model

Physical parameters

Programming .m

M (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + g (θ) = τ

τ = Kpθ̃ +Kv
˙̃
θ + g (θ)

SolidWorks c©

SolidWorks c© (Physics parameters)

Runge-Kutta 4

Fig. 5. Simulator elements

The programming language that set the numerical method is needed to relate
these elements. Matlab c©-Simulink uses Runge-Kutta 4 (ode45).
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The simulator uses the following procedure:

BEGIN

Load model

of blocks

Load image

Control selection

Data Entry

1

1

Control

Dynamic model

Simulation time

Yes

No

Show graphics

END

Fig. 6. Flow diagram

Matlab c© allows us to use the 3D image made in SolidWorks c© using the
Toolbox call as SimMechanics. This toolbox converts the image into an object,
this object can moves according to the results of the numerical method ode45.

SimMechanics provides a multibody simulation environment for 3D mechanical
systems. You model the multibody system using blocks representing bodies,
joints, constraints, and force elements, and then SimMechanics formulates and
solves the equations of motion for the complete mechanical system. Models
from CAD systems requires mass, inertia, joint, constraint, and 3D geometry
information. An automatically generated 3D animation lets us visualize the
system dynamics.
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5 Results

Positions for each joint of the right leg {SPD} is shown in Fig. 7

Cadera

Rodilla

Tobillo

Hip

Knee
Ankle

θ
[d
eg
re
es
]

Time [s]

(a) Position

Cadera

Rodilla

Tobillo

Cadera

Rodilla

Tobillo

Hip

Knee

Ankle

θ
[d
eg
re
es
]

Time [s]

(b) Error position

Fig. 7. Position and error position results (right leg {SPD})
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The trajectories obtained are similar to those shown in Fig. 3. To the left
leg, the graphical output are similar but with a different start point to allow
synchronization of the phases of support and oscillation of the movement of the
legs in the running. Fig. 8 shows the human gait shown by the simulator.

Fig. 8. Movement sequences

6 Conclusion

We developed a simulator using the system dynamic model, the system pa-
rameters, the implementation of a control law, the numerical method (Runge-
Kutta), and the 3D drawing. The trajectory defined by the fifth-order polynomial
adequately approaches the human gait. The trajectory can be improved by
reducing the distance between the points that define it. The gain tuning of the
control structure markedly contributes to the desired response and we can see
its behavior as an amplifier with adjustable gain. The trajectory, defined by the
fifth-order polynomial and the adequate selection of gains, allows the simulator
efficiently replicate the human walking. Our results describe the system without
interaction with the environment (contact with the floor, resistance to movement
or other variables that depend on the time and velocity). The biped system
analysis and the development of the simulator are the starting point for the
development of a prototype with application in rehabilitation.
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