
Real-time 3D Video Processing Using

Multi-stream GPU Parallel Computing

Kenia Picos, Víctor H. Díaz-Ramírez, Juan J. Tapia

Instituto Politécnico Nacional, CITEDI
Avenida del Parque 1310, Mesa de Otay, Tijuana, B. C., México

kpicos@citedi.mx, vdiazr@ipn.mx, jtapiaa@ipn.mx

Abstract. This work presents a real-time video processing algorithm
for 3D scenes using a graphics processor. The processing is based on
parallel computing using concurrent kernels. The proposed algorithm
processes individual pixels of each pair of input stereo images to obtain
an anaglyph image for each frame. To reduce the computational time,
a concurrent kernel implementation using POSIX threads and CUDA
streams is utilized. Also, an asynchronous streams execution is used
to increase overlapping of the video processing implementation. The
obtained results are presented and discussed in terms of speedup and
execution time.

Keywords: graphics processing units, parallel computing, CUDA streams,
image and video processing.

1 Introduction

Nowadays, the use of parallel computing to solve image and video processing
issues in real-time has been rapidly growing [1,7]. Due to the increasing pop-
ularity of modern processor designs based on hierarchical memory structure,
the use of graphics processing units (GPU) has increased signi�cantly due to
their great performance and runtime e�ciency [13]. In the state-of-art of image
and video processing, there are several algorithms that has been implemented
in a parallel platform with an uni�ed device architecture [14]; which results in
an increase of the execution performance of the algorithm. In recent applica-
tions, a sequential synchronization of the loop iterations within the algorithm is
not enough to take full advantage of the bene�ts of the parallel architecture,
by obtaining only a little performance increase with respect to a sequential
execution. This is because there are some time gaps in the use of the pro-
cessing cores, due to synchronization issues. To overcome this shortcoming, an
asynchronous algorithm can be used [5]. In this scenario, data communication
and the e�ective use of processing cores are executed asynchronously, avoiding
unnecessary waiting times due synchronization, and allowing overlapping in the
execution of scheduled tasks [2]. In recent years, a considerable progress has
been made within the context of 3D video processing applications. Nowadays,
3D video is one of the latest innovations in information technology [10]. Current

87 Research in Computing Science 80 (2014)pp. 87–95; rec. 2014-03-28; acc. 2014-10-15



hardware/software technology uses stereo video data to monitor functions as
anaglyph display, disparity depth maps computation, and high quality signal
processing. In a framework of computer vision technologies, the extraction of
3D object information from 2D images can be carried out by employing modern
3D techniques, such as shape from shading, motion tracking, stereo vision, and
many others. Applications such as 3D television and cinema consist on a pair of
2D image sequences which are processed to give us a 3D perception of a scene
[9]. A special monitor or glasses are needed to recreate this perception. A 3D
video data can be easily generated with a stereo camera, so every observation
is interactively changed. However, there are basic limitations that constrain the
viewing direction, produce errors when the object presents pose changes, and
the execution of the algorithm is ine�cient. The last issue can be alliviated by
using streams in a GPU implementation.
In the present work, a multi-stream GPU implementation for real-time video pro-
cessing is proposed. A real-time 3D video processing algorithm is implemented
on a GPU with parallel computing using multiple streams. We are focused
on improving the performance of 3D video processing, particularly by taking
advantage of the asynchronous memory of the GPU. Results obtained with
computer simulations using a graphics processor are presented and discussed
in terms of computational throughput, and runtime e�ciency. The paper is
organized as follows. A brief study of multi-stream computation is presented
in section 2. The proposed real-time 3D video processing implementation is
described in section 3. In section 4, results obtained with the proposed approach
are presented and discussed. Finally, section 5 summarizes our conclusions.

2 Multi-stream GPU Computation

The Compute Uni�ed Device Architecture (CUDA) is applied in hardware and
software for managing operations in a GPU as a data parallel computing device
using an extension to C programming language. This architecture was designed
to exploit massive parallelism in graphics processors, and to use concurrent
streams for single or multiple GPUs, asynchronous data transfers, and simul-
taneous kernel executions on a single device. CUDA creates stream0 by default
with the execution of one GPU [11]. Kernel invocations and data transfers are
lined up on a stream and processed sequentially in the order they were queued
[15]. The creation of multiple streams of execution can perform more work per
unit time and make applications to run faster. The tasks are queued on each
device (GPU), which can potentially increase the application performance by
the number of GPUs installed in the system. Kernel executions can overlap
data transfers and data computation to yield real-time processing and reduce
the overal runtime on one or more GPUs. In order to improve e�ciency on a
single device, concurrent kernel executions can be carried out using multiple
streams [11]. In contrast to synchronous kernel executions, asynchronous kernel
executions are not coordinated within the processor, in where the transmission
of messages are allowed to be performed in an unspeci�ed order [4]. Miellou and

88

Kenia Picos, Víctor H. Díaz Ramírez, Juan J. Tapia

Research in Computing Science 80 (2014)



HD K DH

Execution time

HD1 K1 DH1

K2 DH2

K3 DH3

K4 DH4

HD1 K1 DH1

HD2 K2 DH2

HD3 K3 DH3

HD4 K4 DH4 Performance improvement

(a)

(b)

(c)

Fig. 1. Concurrent execution of an algorithm using streams. (a) Sequential version.
(b) Concurrent version for device-to-host asynchronous memory copy. (c) Concurrent
version for host-to-device and device-to-host asynchronous memory copy

Baudet [5] formalized asynchronous algorithms, and described a generalization
of an approximation method which includes an inherent parallelism. The main
advantages of asynchronous executions are: a) bottleneck reduction, b) synchro-
nization penalty reduction, and c) convergence improvement [5].

3 Real-time 3D Video Processing Using Streams

Concurrent applications can be supported from device by creating a CUDA
context for each GPU used in the system. This context can be determined by
cudaStream_t stream[Ns], where Ns is the total number of streams. This con-
text includes driver information and capability, such as streams, events, virtual
address space, and blocks of memory [12]. With the intercommunication of the
context, the device can handle multiple tasks and multiple GPU applications in
order to expand parallelism [8]. Several image and video processing applications
exploit concurrency through streams. A contribution of this work is the use
of a multi-stream approach for implementing stereo disparity estimation and
anaglyph video frame generation on GPU in a more e�cient way. A sequence
of commands that are executed in a sequential order are called streams. These
streams are often called by di�erent host threads or POSIX threads (pthreads).
The main feature of streams, is that commands can be executed in any order or
concurrently. In the present work, we divide the input image in several fragments,
and process each fragment asynchronously in a di�erent CUDA stream. This
asynchronous behavior allows overlapping of task executions on the device.
Fig. 1 shows a stream creation process. A stream is speci�ed by a param-

89

Real-time 3D Video Processing Using Multi-stream GPU Parallel Computing

Research in Computing Science 80 (2014)



eter that de�nes a sequence of kernel invocations including a host-to-device
(HD) and device-to-host (DH) memory copy using cudaMemcpyAsync() function
[11]. The creation of streams could be described with a speci�c CUDA expres-
sion cudaStreamCreate(&stream[i]), where i is the number of the current
stream. These streams are allocated in a host array in the page-locked mem-
ory with cudaMallocHost(&array, size). A kernel call queues the function
invocation on the stream related with the current device. In general, a CUDA
context for multiple stream execution [12] could be con�gured by the expression
kernel<�<�<blocks, threads, 0, stream[i]>�>�>(parameters). For concurrent
executions within a device multiple streams are required, that is, multiple kernels
can be executed concurrently on a single device [3].
The proposed implementation has been developed in a CPU/GPU architecture
running on Linux OS with multi-core host processor (Intel i7) and an NVIDIA
graphics processor GeForce GTX780 with 3.5 compute capability. An algorithm
with pthreads and CUDA streams for 3D video processing is implemented. The
main steps related to the present work consists on a) video capture, b) video
processing, and c) video display. In Algorithm 1, we introduce a CUDA/OpenCV
interoperability for video capture and display. Pthreads and streams creation is
speci�ed in Algorithm 2. Here, memory is copied asynchronously from host to
device in order to compute the kernel that is described in Algorithm 3. Then,
the memory is copied back from device to host. The anaglyph video frame is
generated and displayed in the host using OpenCV framework.

Algorithm 1 Video Capture Algorithm

1: procedure VideoCapture(frame) . input *.mp4 3D video �le
2: Capturing 3D video frames
3: fps = capture properties
4: Memory allocation in GPU
5: while frame 6= 0, do . video capture is opened
6: Separate L(x, y) and R(x, y) from frame
7: Lb = Lg = 0
8: Rr = 0
9: Image=VideoProcessing(L,R); . processing kernel in gpu
10: end while

11: FreeCudaMem(); . free memory allocation
12: end procedure

4 Results

In this section, results obtained with the proposed algorithm for 3D video pro-
cessing are presented and discussed in terms of computational performance
and throughput. The algorithm was implemented using parallel computing with
pthreads and CUDA streams. In each frame, a pthread executes several CUDA

90

Kenia Picos, Víctor H. Díaz Ramírez, Juan J. Tapia

Research in Computing Science 80 (2014)



Algorithm 2 Video Processing Algorithm

1: procedure VideoProcessing(L,R) . input L, R video channels
2: Pthread Create and Execute
3: for i← 1, Nd, do . Nd=number of devices
4: for i← 1, Ns, do . Ns=number of streams
5: cudaStreamCreate(&stream[i]);
6: end for

7: for i← 1, Ns, do
8: j = (i ∗ S ∗Nd) + (tid ∗ S); . j is an o�set
9: cudaMemcpyAsync(dL+j, L+j, size, host→device, stream[i]);
10: cudaMemcpyAsync(dR+j, R+j, size, host→device, stream[i]);
11: kernel<<<grid,thread,stream[i]>>>(dL+j, dR+j, dI+j);
12: cudaMemcpyAsync(I+j, dI+j, size, device→host, stream[i]);
13: end for . Stream destroy
14: end for . Pthread Join
15: end procedure

streams. The maximum number of streams executed per thread depends on
the graphics processor architecture. A sample of video frames used in our ex-
periments are illustrated in Fig. 2. Note that CUDA kernel has been used for
processing input images, in order to obtain an anaglyph image for each frame.
Fig. 2(a) and 2(b) shows the left and right channels of the input sequence.
Fig. 2(c) shows the resultant anaglyph images obtained with the GPU. In the
anaglyph images, di�erent disparities are computed to present the displayed
content. It can be seen that the red-cyan disparity depends on the distance of
objects with respect of both channels. The disparity d is obtained from the sum
of absolute di�erences (SAD), as follows:

SAD(x, y, d) =

N∑
i,j∈W (x,y)

|L(i, j)−R(i− d, j)|. (1)

The intensity di�erence of both channels L and R is calculated for each pixel in a
square window W (x, y) with origin at (i, j)-th pixel [6]. The area-based disparity
is obtained from the sum of squared di�erences (SSD) of both channels, given
by [6]

SSD(x, y, d) =

N∑
i,j∈W (x,y)

|L(i, j)−R(i− d, j)|2. (2)

The accuracy of the disparity map depends on the window size because there is
a correspondence with the probability of matched points. In our experiments the
size of the window whereW is 11×11 pixels. Note that the size of the window has
a direct impact on the computational load of the proposed method. The kernel
function used in Algorithm 3 is implemented with 1 to 8 pthreads and with 1
to 8 streams in each pthread. The input images are fragmented in rows and
they are processed accordingly with the current thread and stream execution.

91

Real-time 3D Video Processing Using Multi-stream GPU Parallel Computing

Research in Computing Science 80 (2014)



<<< >>>
x = .x+ .x ∗ .x
y = .y + .y ∗ .y
tid = x+ y ∗ .x ∗ .x
Image[tid] = (L[tid] +R[tid])

�

92

Kenia Picos, Víctor H. Díaz Ramírez, Juan J. Tapia

Research in Computing Science 80 (2014)



1 2 4 8 16 32

0

10

20

30

Number of Streams

S
p
ee
d
u
p

256
512
1024
2048

Fig. 3. Performance of the proposed algorithm for di�erent image sizes

The number of grids and threads per block executed concurrently in the kernel
depend on the number of streams and pthreads, given by

S = (Nx ×Ny)× CH/(Nd ×Ns). (3)

where S is the size of the fragment of the image processed on the current kernel.
For each frame, the image fragment has the same size S, and no fragment overlaps
with another. Nx ×Ny and CH are the size of the input image and number of
channels (3 RGB color channels), respectively. The number of pthreads and
the number of streams are represented by Nd and Ns, respectively. The index
of a fragment is assigned according the order of call of POSIX and stream
argument; however the frames are asynchronously processed. The performance
of the algorithm given in terms of the number of threads and streams used in
the image partition, is shown in Table 1. It can be seen that by increasing the
number of streams per pthread, the speedup increases. The runtime of the kernel
execution is 70% o� the overall processing executions. The achieved occupancy
is the ratio of active warps to the maximum active warps per processor, given by
almost 50%. The sample video sequence contains 2000 frames of a set of stereo
images with 1024×1024 pixels, and 3 color channels (RGB). Fig. 3 shows the
relation of the performance in terms of speedup and number of streams. Observe
that with di�erent image sizes, the performance increases more than 30 times
when more streams are used.

5 Conclusions

In this work, a CUDA stream-based algorithm that increases parallelism for
3D video processing was proposed. The algorithm can be e�ciently used for

93

Real-time 3D Video Processing Using Multi-stream GPU Parallel Computing

Research in Computing Science 80 (2014)



Table 1. Computing results for a sample 3D video with 1024×1024 pixels

Threads
Streams
per

threads

Pro�ler
Time (%)

Kernel
execution
(ms)

Speedup
(times)

Achieved
occupancy

(%)

Memory
stored

Throughput
(MB/s)

Memory
loaded

Throughput
(GB/s)

1 1 72.63% 15.72 1.00 47.86% 883.64 211.50

1 2 72.48% 7.86 2.00 47.95% 874.76 209.37

1 4 72.49% 3.93 3.99 47.99% 855.03 204.61

1 8 72.32% 1.97 7.98 47.91% 804.08 192.42

2 1 71.90% 7.90 1.99 47.95% 872.57 208.85

2 2 72.19% 5.77 2.72 47.99% 815.72 195.20

2 4 72.51% 3.14 5.01 47.89% 804.19 192.45

2 8 72.98% 1.03 15.31 47.22% 781.47 187.01

4 1 71.06% 3.98 3.95 48.00% 820.25 196.28

4 2 71.83% 2.02 7.79 47.06% 803.98 192.40

4 4 72.80% 1.37 11.45 47.57% 781.66 187.05

4 8 74.33% 0.54 29.22 46.73% 748.43 179.10

8 1 70.29% 2.02 7.77 47.90% 804.09 192.42

8 2 71.69% 1.03 15.20 47.57% 781.45 187.00

8 4 73.68% 0.54 28.99 46.73% 784.60 179.14

real-time 3D video processing. In our implementation, several CUDA streams are
executed asynchronously in where each one is able to process a fragment of the
input image to compute an anaglyph image. According to computer simulation
results, the proposed system yields high e�ectiveness in the execution of the video
processing algorithm in terms on computing performance metrics. The proposed
system was implemented in a GPU by taking advantage of massive parallelism.
In our implementations, the proposed system achieves a processing rate above
100 frames-per-second (fps) in 3 color channel images of 1024×1024 pixels.
The proposed approach performs well with occlusions, however may introduce
arti�cial borders artifacts for a video sequence at speed higher than 70 fps.
For future work, the proposed algorithm will be optimized for scenes when the
visualization of the object of interest presents light re�ections.

References

1. Bhatti, A., Nahavandi, S.: Stereo correspondence estimation using multiwavelets
scale-space representation-based multiresolution analysis. Cybern. Syst. 39(6),
641�665 (2008)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

3. Farber, R.: CUDA Application Design and Development. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)

4. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1st edn. (2011)

94

Kenia Picos, Víctor H. Díaz Ramírez, Juan J. Tapia

Research in Computing Science 80 (2014)



5. J. M. Bahi, S. Contassot-Vivier, R.C.: Parallel Iterative Algorithms. Chapman and
Hall/CRC (2008)

6. Kamencay, P., Breznan, M., Jarina, R., Lukac, P., Zachariasova, M.: Improved
depth map estimation from stereo images based on hybrid method. Radioengi-
neering 21(1), 70�78 (2012)

7. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruc-
tion from high spatio-angular resolution light �elds. ACM Trans. Graph. 32(4),
73:1�73:12 (2013)

8. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edn.
(2013)

9. Malik, A.S., Choi, T.S., Nisar, H.: Depth Map and 3D Imaging Applications:
Algorithms and Technologies. IGI Global, Hershey, PA, USA, 1st edn. (2011)

10. Matsuyama, T., Nobuhara, S., Takai, T., Tung, T.: 3D Video and Its Applications.
Springer Publishing Company, Incorporated (2012)

11. NVIDIA: CUDA C Best Practices Guide (2014)
12. NVIDIA: NVIDIA CUDA Programming Guide 6.0 (2014)
13. Pacheco, P.: An Introduction to Parallel Programming. Morgan Kaufmann (2011)
14. Rodríguez-Sánchez, R., Martínez, J.L., Cock, J.D., Fernández-Escribano, G.,

Pieters, B., Sánchez, J.L., Claver, J., de Walle, R.V.: 3D high de�nition video
coding on a GPU-based heterogeneous system. Computers & Electrical Engineering
39(8), 2623�2637 (2013)

15. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional (2010)

95

Real-time 3D Video Processing Using Multi-stream GPU Parallel Computing

Research in Computing Science 80 (2014)


